
Handout #2

ASEN 5327 Computational Fluid Dynamics
Spring 2009

Homework 1, due Thursday, January 29

Problems from Tannehill, Anderson, and Pletcher
2.10
In problem the second equation should read

∂v

∂t
+ 2

∂u

∂x
= 0

2.13
2.14
2.15
2.16
2.20
For a more interesting solution to this problem, consider the following initial condi-
tions

u(x, y = 0) = sin2(x)

uy(x, y = 0) = sin(x)

1. The energy equation in fluid mechanics can be written in various forms. In terms
of the temperature, the equation is

ρcv

[
∂T

∂t
+ uj

∂T

∂xj

]
+ p

∂uj

∂xj

= − ∂

∂xj

(
k

∂T

∂xj

)
+ τij

∂ui

∂xj

where cv is the constant volume specific heat (a constant), k is the thermal conduc-
tivity (a function of temperature) and tij is the viscous stress, defined as

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
µ

∂uk

∂xk

δij

Here µ is the viscosity coefficient (a function of temperature) and δij = is the Kro-
necker delta (equal 1 for i = j, 0 otherwise).

(a) Attempt to write the temperature equation in strong conservation law form.
You may use any other valid conservation law in performing this derivation.

(b) Identify any spatial terms that can not be put in divergence form.
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(c) Form a ”kinetic energy transport equation” by dotting the momentum equation
with the velocity vector. Start with the momentum equation in the following
form

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
+

∂p

∂xi

=
∂τij

∂xj

(d) Can the kinetic energy transport equation be put in strong conservation law
form? If not, identify the terms which prohibit this.

(e) By adding the temperature and kinetic energy equations, show that the resulting
equation for the total energy, Et = ρ(cvT + 1/2uiui) can be put in strong
conservation law form.

(f) Which form of the energy equation should be used in numerical simulations?
Why is this the case?

2. Burgers equation is a commonly-used model equation for non-linear advection. It
reads

∂u

∂t
+ u

∂u

∂x
= 0

Consider a problem on a domain 0 ≤ x ≤ L.

(a) Show that the average value of u satisfies the following global conservation
constraint

L
dū

dt
=

1

2
u(x = 0, t)2 − 1

2
u(x = L, t)2

where

ū(t) =
1

L

∫ L

0
u dx

(b) Consider the following discretization of Burgers equation

un+1
i − un

i

∆t
+ un

i

(
un

i − un
i−1

∆x

)
= 0

on a grid defined by xi = i∆x, i = 0, 1, 2, ...N , ∆x = L/N , where x0 and xN

are known boundary values. By making use of the following discrete integration
rule, ∫ L

0
u(ξ, t)dξ '

N∑
i=1

un
i ∆x

show that the above discretization rule does not satisfy the global conservation
constraint.

(c) Show that the Burgers equation can also be written in the following ”strong
conservation law” form

∂u

∂t
+

∂(u2/2)

∂x
= 0
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(d) Show that the following discretization

un+1
i − un

i

∆t
+

1

2

(
(un

i )2 − (un
i−1)

2

∆x

)
= 0

of the strong conservation law form does satisfy the global conservation con-
straint.

3. Write a computer program to solve the 1-D wave equation as described on the
”animations/wave equation example” link on the course website. Use the generalized
approach to the spatial derivative as shown on the website, using the parameters α, β,
and γ. Run three cases, one for a forward difference, one for a central difference, and
one for a backward difference. In each case, use 100 points in x and a CFL number
of 0.1. Plot the computed solution against the exact solution at a time of t = 0.5L/c
for cases where the solution does not blow up. For cases where the solution blows up,
plot the average and root mean square of the solution as a function of time. Use a
log scale as appopriate if the numbers become extremely large.
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