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ASEN 5327 Computational Fluid Dynamics
Spring 2009

Homework 2, due Thursday, February 19
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1. In trying to improve the accuracy of a numerical solution, one can increase the
order of accuracy of the finite-difference operators themselves, or one can simply
refine the mesh. The effective wavenumber analysis can offer valuable insight into the
tradeoffs of these two approaches.

(a) Starting with the finite-difference expression for a 4th order central difference,
derive the following result for the corresponding effective wavenumber

keff 4 =
8 sin(k∆x)− sin(2k∆x)

6∆x

As derived in lecture and in the textbook, the analogous result for a 2nd order
central difference is

keff 2 =
sin(k∆x)

∆x

(b) Consider a situation where 2nd order central differences are used on a mesh
containing N points. In one approach to improve accuracy, the 2nd order
differences are replaced with 4th order differences while the number of mesh
points is held fixed at N . In a second approach, the 2nd order differences are
retained, but the number of mesh points is increased to γN (γ ≥ 1). Define
the non-dimensional finite-difference error as E∆x0/π = (k− keff )∆x0/π. Plot
this error for the 4th order scheme over the non-dimensional wavenumber range
0 ≤ k∆x0/π ≤ 1 (since 0 ≤ k ≤ N/2 and ∆x0 = 2π/N). On the same plot,
display the second order error applied to a mesh with 2N points. How do the
two errors compare at the low and high wavenumber ends of the spectrum?
Which approach appears to be better? Is this conclusion problem-dependent?
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2. The 1-D advection-diffusion equation is

∂u

∂t
+ c

∂u

∂x
=

∂

∂x

(
ν
∂u

∂x

)

Where c and ν are constants.

(a) Consider a problem on a domain 0 ≤ x ≤ L with Dirchlet boundary conditions
u(x=0, t) = 0, u(x=L, t) = u1. Show that the advection-diffusion equation
and boundary conditions can be put into the following non-dimensional form

∂u∗

∂t∗
+

∂u∗

∂x∗
=

1

Re

∂2u∗

∂x∗2

u∗(x∗=0, t∗) = 0, u∗(x∗=1, t∗) = u∗1

Where x∗ = x/L, u∗ = u/c, t∗ = ct/L, and Re = cL/ν.

(b) Notice that the advection-diffusion equation can admit steady state solutions.
Show that a steady state solution to the non-dimensional problem is

u∗∞(x∗) ≡ u∗(x∗, t∗→∞) =

(
exp(x∗Re)− 1.0

exp( Re)− 1.0

)
u∗1

(c) Attempt to determine a general solution to the time-dependent problem started
from the initial condition u∗(x∗, t∗=0) = u∗0(x

∗).

(d) Modify your wave equation program to solve the advection-diffusion equation
as stated above in non-dimensional form. Generalize the program so that the
mesh can be compressed near the x∗ = 1 boundary. Do this by making use of
the following geometric stretching law

∆xi+1 = (1 + σ)∆xi

where σ is the constant mesh expansion rate. Positive values of σ produce
meshes that expand in the direction of the index i, negative values result in
compression. As an example, a value of σ = 0.1 results in a mesh where each
successive cell is 10% larger than its neighbor to the left. Notice that one must
specify either the expansion rate or the spacing at one end of the distribution
if a set number of points is to cover a domain of fixed length.

As we will derive later in the course, the maximum allowable time step for our
chosen discretization of the advection-diffusion equation is predicted to be

∆t∗ = min( 2/Re, 0.5Re(∆x∗min)2 )

for a central difference of the advective term and

∆t∗ =
Re(∆x∗min)2

2 + Re∆x∗min
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for a first order upwind difference. In these equations ∆x∗min is the minimum
mesh spacing within the domain. Note that these estimates are only apporxi-
mate and thus it may be necessary to lower the time step somewhat in order to
realize stable solutions.

The steady-state result can be achieved by simply time-advancing the solution
until it ceases to change. This should happen by t∗=5.

Use your program to determine a steady-state solution for Re = 40, subject to
the following initial and boundary conditions

u∗0(x
∗) = 2x∗, u∗1 = 2

Do this first with a uniform mesh and use both central and backward differences
for the advective term. Use a central difference for the diffusive term. Consider
meshes with 10, 20, 40, 80, and 160 points. Compute the rms error between
the computed and exact solutions at a time of t∗ = 5 and use these data to
make a convergence plot. Confirm the orders of accuracy of the central and
backward difference schemes. Also plot the solutions at t∗ = 5 along with the
exact steady-state solution for the cases with 10, 40, and 160 grid points.

(e) Investigate the benefit of mesh compression by running cases with 20 points and
compression rates of σ = 0.0, -0.05, -0.10, -0.15, and -0.20 for both backward
and central differences applied to the advective term. Make a plot where the
rms error (measured at t∗ = 5) is plotted as a function of the mesh stretching
factor (|σ|). Also plot the solutions at t∗=5 along with the exact steady-state
solution for the cases with σ = 0.0 and -0.15.

3


