ASEN 5327 Computational Fluid Dynamics
Spring 2009

Homework 4 Solution

1. The two-dimensional Euler equations are
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where the vectors U, F, and F' are defined as
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The total internal energy is
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where v = ¢,/¢, is the ratio of specific heats. The ideal gas law, expression for the
speed of sound, and connection between R ¢, and ¢, are
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The z-direction flux Jacobian is defined as
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The easiest way to derive the flux Jacobian is to write the solution vector U symbol-
ically as {u1, us, us, us}T where uy = p, us = pu, uz = pv, uy = F;. We then write
the flux vector in terms of these variables to get
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It is now a fairly straightforward matter to differentiate with respect to the u;s
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This result can be written in terms of the primitive variables through the definition

of the u;s. Doing this yields
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where the definition of the speed of sound, ¢ = «yp/p has been used.

The eigenvalues of [A] are found by solving det([A] — A[I]) = 0. It is easiest to

proceed with [A] written symbolically
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The determinant is unchanged if any given row in replaced with a linear combination
of itself and another row. Some simplification can be achieved in this manner if the
third row is replaced with itself minus u times the second row. Doing this results in
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The determinant of the modified system is
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After substituting the values for the remaining coefficients a, and simplifying, the
characteristic equation becomes

(u—c—=AN(u+c—=AN)(u—=A)(u—X) =0 (11)
From which the eigenvalues are apparent

A=u—c¢, A=u+c, A=u, A=u (12)
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Figure 1: Steady-state solutions for Nx=50 (left) and Nx=100 (right) for n = 4.
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Figure 2: Steady-state solutions for Nx=200 (left) and Nx=>500 (right) for n = 8.

Nx,Ny | Number of iterations | CPU Time (sec) | Speed (sec/(Iterations*Nx*Ny))
50,50 4413 0.0580 5.256 x 1077

100,100 14829 0.745 5.024 x 1077

200,200 48071 9.435 4.907 x 1077

500,500 207461 255.154 4.920 x 1077

Table 1: Computer time required using gfortran on a 2.2GHZ Intel core duo (mac-
book). Only one core used for the computation.




