Lecture Schedule

8/25 Introduction to chapter 1, sections 1.1-1.3
   Description of the course
   Definition of a fluid
   Statistical vs continuum methods
   Eulerian and Lagrangian coordinate systems

08/27 Sections 1.4-1.6
   Control Volumes
   Conservation mass, momentum, and energy expressed in a Lagrangian frame
   Reynolds transport theorem
   Application of the transport theorem to the conservation laws

09/01 Sections 1.7
   Conservation of mass in an Eulerian frame
   Viscous and pressure forces
   surface stress tensor
   Conservation of momentum in a Lagrangian frame using the surface stress tensor
   Conservation of momentum in an Eulerian frame

09/03 Sections 1.8-1.9
   Conservation of energy in a Lagrangian frame using the surface stress tensor
   Conservation of energy in an Eulerian frame
   Separate conservation laws for kinetic and internal energy
   Review of the conservation laws - vector vs component equations

09/08 Sections 1.10-1.12
   Fluid deformation - rotation and the rate of shear
   Description of viscous forces in fluids - analogy with solid mechanics
   General form of a linear viscous force model
   Specific form of the viscous stress via symmerty and isotropy arguments
   Viscosity coefficients

09/10 Sections 1.13-1.16
   Fourier's linear model for heat conduction
   Coefficient of thermal conduction
   Momentum and energy equations using the viscous stress and thermal conduction models
   Conversion of kinetic energy to heat via viscous forces (viscous dissipation)
   Compressible vs incompressible flow
   Boundary conditions

09/15 Introduction to chapter 2, sections 2.1-2.3
   Streamlines, pathlines, and streaklines
   Circulation and vorticity
   Stream tubes and vortex tubes

09/17 Section 2.4, introduction to chapter 3, sections 3.1-3.2
   Kinematics of vortex lines
   Kelvin's theorem
   The Bernoulli equation

09/22 Sections 3.3-3.4, Introduction to part II
   Crocco's equation
   The vorticity equation
   Idealized fluid flow - incompressible and inviscid

09/24 Introduction to chapter 4, sections 4.1-4.4
   Governing equation for ideal fluid flow - the velocity potential and potential flow theory
   2D flow and the use of the streamfunction
   Complex variable representation for 2D potential flow
   Elementary flow solutions and the superposition principle
   Uniform flow
   Source, sink, and vortex flows

09/29
   Midterm exam 1

10/1 Sections 4.7-4.11
   Doublet flow
   Circular cylinder with and without circulation
   Blasius Integral laws
   Forces and moments on a circular cylinder

10/6 Sections 4.12-4.13,4.18
   Conformal transformations
   The Joukowski airfoil

10/8 Sections 4.19-4.22
   Schwarz-Christoffel transformation
   Attached vs separated flow past a vertical plate

10/13 Introduction to part III, introduction to chapter 7, sections 7.1-7.2
   Governing equations for incompressible viscous flow
   Couette flow
   Poiseuille flow

10/15 Sections 7.3-7.5
   Circular Couette flow
   Impusively started flat plate
   Oscillating flat plate

10/20 Sections 7.6-7.7,7.9
   Pulsatile Poiseuille flow
   Stagnation point flow
   Flow in convergent and divergent channels
   Flow over a porous wall

10/22 Introduction to chapter 8, Sections 8.1-8.5,8.7-8.8
   Governing equations for very low Reynolds number flows - creeping flow
   Analogy with potential flow
   Creeping flow past a sphere
   Creeping flow past a circular cylinder

10/27 Introduction to chapter 9, sections 9.1-9.2
   The boundary layer concept
   Scaling analysis for boundary layers
   The boundary layer equations
   Advantage of the boundary layer equations

10/29 Sections 9.3
   The Blasius boundary layer solution

11/3
Midterm exam 2

11/5 Sections 9.4-9.5,9.7
   Falkner-Skan solutions
   Viscous flow over a wedge
   Viscous flow in a convergent channel

11/10 Sections 9.8-9.9
   Approximate solutions to the boundary layer equations
   Solution for a simple 2nd order polynomial
   The general momentum integral

11/12 Sections 9.10
   Solution for a 4th order polynomial
   The effects of a pressure gradient

11/17 Sections 9.11
   Boundary layer separation
   The effects of boundary layer separation on drag
   Examples of separated flow - forces on cylinders and spheres, aircraft stall

11/19 Sections 9.12
   Boundary layer stability
   Linear stability theory
   Effects of wall roughness and large external disturbances

11/24
   Fall break - no class

11/26
   Fall break - no class

12/3 Introduction to chapter 10, sections 10.1-10.2
   The effects of buoyancy
   The Boussinesq approximation
   Convective stability and instability
   Thermal convection

12/1 External source to be announced
   Atmospheric stability
   Moist processes and convective instability
   Shear instability

12/8 External source to be announced
   Introduction to turbulent flows
   The Reynolds averaged equations
   The turbulence closure problem

12/10 External source to be announced
   The need for turbulence modeling
   Overview of modeling approaches
   simple algebraic models

12/14
   Final exam