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Oceanic observations from western Europe and the south-western Indian ocean have
provided evidence of the generation of internal solitary waves due to an internal
tidal beam impinging on the pycnocline from below – a process referred to as ‘local
generation’ (as opposed to the more direct generation over topography). Here we
present the first direct numerical simulations of such a generation process with a
fully nonlinear non-hydrostatic model for an idealised configuration. We show that,
depending on the parameters, different modes can be excited and we provide examples
of internal solitary waves as first, second and third modes, trapped in the pycnocline.
A criterion for the selection of a particular mode is put forward, in terms of phase
speeds. In addition, another simpler geometrical criterion is presented to explain the
selection of modes in a more intuitive way. Finally, results are discussed and compared
with the configuration of the Bay of Biscay.
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1. Introduction
Internal solitary waves (ISWs) in the oceans and shelf seas started to be observed in

the 1960s; this coincided with mathematical developments on the Korteweg–de Vries
(KdV) equation and soliton theory. The KdV equation has since served as the primary
theoretical tool for interpreting observations of ISWs in the ocean (Ostrovsky &
Stepanyants 1989). More recently, important developments have occurred on two
fronts. First, the advance in measurement techniques such as moored acoustic Doppler
current profilers, or airborne and satellite remote sensing, allowing not just detailed
but also more synoptic observations to be made. Second, the advance in theoretical
and numerical modelling, allowing one to go beyond the weakly nonlinear KdV
theory and to study ISWs of large amplitude. These developments, however, have
not altered the view of the basic mechanism behind the generation of the majority of
ISWs, which starts with (tidal) flow over topography generating internal waves, their
subsequent evolution and steepening and finally splitting up into ISWs. In this view,
propagation is horizontal, as in unimodal internal or interfacial waves. For a review
on the study of ISWs, see Helfrich & Melville (2006).
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An altogether different mechanism was proposed by New & Pingree (1990) to
explain observations of ISWs in the central Bay of Biscay. They argued that these
ISWs are not directly related to topography (the continental slope), but are generated
by an internal tidal beam hitting the seasonal thermocline from below. The beam
originates from the shelf-break, with downward propagation of energy into the abyssal
ocean, which turns into upward propagation when the beam reflects from the bottom.
On its upward path, it finally encounters the seasonal thermocline, perturbs it locally
and may, under the right circumstances, lead to ISWs in the thermocline. New &
Pingree (1990) coined the term ‘local generation’ of ISWs to refer to this process.
Measurements of the beam location were consistent with ray paths computation based
upon the local stratification and the bathymetry of the Bay of Biscay (Pingree & New
1991). Further evidence of local generation of ISWs was presented by New & Pingree
(1992). This set of three papers therefore convincingly proved the existence of a local
generation mechanism of ISWs. Since the beginning of the 2000s, a new remote
sensing technique – namely synthetic aperture radar or SAR (New & da Silva 2002;
Azevedo, da Silva & New 2006) – has confirmed the occurrence of this mechanism in
spring and summer, when the seasonal thermocline is present. SAR imagery recently
also showed the occurrence of local generation off south-west Portugal (da Silva,
New & Azevedo 2007) and in the Mozambique channel (da Silva, New & Magalhaes
2009). This mechanism might also explain observations near the Mascarene Ridge by
Konyaev, Sabinin & Serebryany (1995), which, interestingly, shows that the observed
ISWs are partly mode-1 waves, i.e. the whole water column in the thermocline
moves in phase, and partly mode-2 waves, in which case the structure of vertical
displacements has a node in the middle of the thermocline, while positions above and
below this point move in opposite directions. In the remainder of this paper, we shall
rather use the term ‘pycnocline’ in place of thermocline for more generality. Indeed,
a temperature jump results in a density jump, as also does a jump in salinity.

Few attempts have so far been made to explain quantitatively the underlying
physical mechanism. This mechanism should follow certain rules, requiring specific
conditions to be met, as suggested by the sparsity of the observations. We briefly
discuss previous work that dealt with this problem.

The effect on a pycnocline of an incident plane internal gravity wave was studied
experimentally and theoretically by Delisi & Orlanski (1975) for the first time, the
wave field achievable in their experiments was actually closer to a wave beam. In
the theoretical model they developed, the vertical density profile consists of a density
jump across an interface (the pycnocline), with a stably stratified layer of constant
N above, and a non-stratified layer (i.e. N = 0) below. Here, N is the buoyancy or
Brunt–Väisälä frequency, defined by N2 = −(g/ρ0) dρ/dz, where g is the gravitational
acceleration, ρ0 is a reference density and ρ0 + ρ(z) is the non-hydrostatic density
profile, z being the vertical coordinate oriented positively upwards. Their model is
linear and implicitly assumes the upper and lower layers to be infinite. It describes
the evolution of a plane internal gravity wave reflecting at the interface from above.
It predicts a phase shift between the incident and reflected waves as well as the
amplitude of the interfacial displacement induced by the reflection of the wave. This
displacement was found to be largest for a specific density jump "ρ such that

β ≡ g
"ρ

ρ0

kx

ω2
$ 1, (1.1)

where kx is the horizontal wavenumber component of the incident wave and ω is its
frequency. This relation represents the square of a ratio of two phase speeds. First,
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the horizontal phase speed of the incident plane wave (ω/kx). Second, the theoretical
short-wave phase speed of interfacial waves (the upper and lower layers being of
infinite extent) is given by (g"ρ/(2kxρ0))1/2 and, apart from a factor of two, this
expression features in (1.1). In Delisi & Orlanski (1975), no reference was made to
possible generation 89 of ISWs along the interface; instead the emphasis was on the
occurrence of overturning.

Following the work of New & Pingree in the 1990s, the theoretical model of
Delisi & Orlanski (1975) was considered again by Thorpe (1998). Thorpe derived
the dispersion relation of interfacial waves for the case in which the homogeneous
layer is finite. He investigated the influence of weakly nonlinear effects upon the
reflected internal gravity wave and showed that a harmonic wave can be generated.
He also discussed for what range of parameter values, as encountered in the Bay of
Biscay, a generalised version of (1.1) could be satisfied; he argued that these would
form favourable conditions for the development of ISWs in the pycnocline due to an
incident internal tidal wave beam.

This work was further extended by Akylas et al. (2007), in the limit of long waves
(in the sense that kxh % 1, i.e. long with respect to the mixed layer thickness implying
that non-hydrostatic effects are weak) and when an internal wave beam (instead of a
simple plane wave of infinite horizontal extent) impinges on the pycnocline. Akylas
et al. (2007) first addressed the linear development of the interfacial waves. Because
the frequency of these waves is the forcing frequency ω, they radiate energy back into
the stratified fluid. Long-living interfacial waves are therefore prohibited in the linear
regime. The weakly nonlinear regime was then investigated, the near-field and far-
field evolutions leading to distinct solutions. In the near-field evolution, no radiation
occurs and the interfacial displacement is found to be maximum when the wavelength
of the interfacial wave matches the horizontal width of the incoming wave beam.
The far-field evolution is described by an equation which involves weakly nonlinear,
weakly non-hydrostatic and radiative effects. It admits soliton-like solutions obtained
numerically.

The result of Akylas et al. (2007) confirmed the general idea behind ‘local
generation’ as put forward by Gerkema (2001), namely that the initial phase is
essentially linear and amounts to a ‘scattering’ of the beam as it encounters the
pycnocline; nonlinear (and non-hydrostatic) effects become important in the second
phase, when the perturbation of the pycnocline propagates away, steepens and may
break up into ISWs. In some ways, the setting adopted by Gerkema (2001) was
different from that of Akylas et al. (2007). In the former, too, the stratification
consists of a mixed upper layer, an interfacial pycnocline and a constantly stratified
lower layer, but the ocean depth was taken finite and the internal tidal beam (which
impinges on the pycnocline from below) was generated by including barotropic tidal
flow over infinitesimal topography. The linear problem was solved analytically in terms
of vertical modes. All parameters were representative of the oceanic configuration of
the Bay of Biscay and were fixed, except for the density jump across the interface,
which was varied. It was then shown that the amplitude of the interfacial displacement
is controlled by the ratio of the phase speed of interfacial long waves in a two-layer
fluid to the phase speed of the first internal gravity wave mode in the uniformly
stratified lower layer. It was concluded that the density jump across the pycnocline
has to be moderate for the displacement amplitude of the interface to be maximum.
If the density jump is stronger (than moderate), the beam is reflected at the interface.
If the density jump is weaker, the beam is transmitted across the discontinuity as
an evanescent wave whose decay length is much longer than the thickness of the
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homogeneous layer. In the Bay of Biscay indeed, typical horizontal wavelength of
the beam is 10 km and the thickness of the upper mixed layer is about 50 m. The
beam is then reflected at the free surface and almost fully transmitted back into the
stratified layer. Gerkema (2001) also derived and solved numerically the equations
for the weakly nonlinear and weakly non-hydrostatic regime. Only for a moderate
density jump was the nonlinear development of interfacial waves observed, evident
from steepening and disintegration into ISWs. This work was extended by Maugé &
Gerkema (2008) to a more general setting in which the topography (here a continental
slope) was allowed to be of finite amplitude.

All these studies are limited as they address, at best, weakly nonlinear and weakly
non-hydrostatic effects and treat the pycnocline as an interface, i.e. a layer of
infinitesimal thickness, with the exception of Maugé & Gerkema (2008), who used
stratification profiles obtained from measurements in the Bay of Biscay. In the present
paper, we present numerical results obtained with the MIT general circulation model
(MIT-gcm); we are thus able to relax all these constraints at once: we allow a
finite thickness of the pycnocline as well as fully nonlinear and non-hydrostatic
effects. Our aim is to investigate when ISWs can be obtained in this more general
situation, what is the influence of the finite thickness of the pycnocline on the wave
structure and whether the criteria of Delisi & Orlanski (1975), Gerkema (2001) and
Akylas et al. (2007) for maximum pycnocline displacement still hold. The numerical
set-up we consider is idealised, being two-dimensional, with simplified structures
of stratification and forcing. Rotation is absent and the values of the parameters
considered are inspired from laboratory experiments performed on the same problem
in Grenoble. This experimental work will be reported in due time by their authors.

The numerical set-up is described in the next section. In § 3, we show that a mode-1
ISW, which is the kind most commonly observed and documented, can be generated
at the pycnocline by the impinging beam. A criterion for the selection of a particular
mode is put forward for this purpose, in terms of phase speeds. This allows us to
show in § 4 that initial and forcing conditions can be designed such that mode-2 or
mode-3 ISWs are obtained. In addition, we propose in § 5 another simple physical
model to understand the selection of modes in the very near-field of the internal wave
beam impact. The bandwidths of the selection criteria thus derived are discussed in
§ 6 along with the predictions of these criteria for the configuration of the Bay of
Biscay. We conclude in § 7.

2. Numerical set-up
We use the MIT-gcm code, a finite-volume, nonlinear, non-hydrostatic numerical

model which solves the equations of motion under the Boussinesq approximation
(Marshall et al. 1997). No subgrid modelling option is activated in our case, implying
that the numerical simulations are direct.

We define a two-dimensional Cartesian coordinate system (O, x, z) whose origin
is at the top left-hand corner of a rectangular domain, with z oriented vertically
upwards. The Coriolis frequency is set to zero (for a discussion of effects of rotation,
see § 6.2). An internal wave beam is imposed on the left boundary of the domain and
propagates in a uniformly stratified fluid before impinging on a pycnocline of finite
thickness. This configuration is described in detail below and sketched in figure 1.
Values of all parameters defined in this section are displayed in tables 1 and 2.

The density profile we consider is continuous and consists of a homogeneous
upper layer, a uniformly stratified lower layer and a pycnocline in between, namely a
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Brunt–Väisälä frequency in the lower layer N0 0.6 rad s−1

Forcing frequency ω0 0.424 rad s−1

Forcing period T0 = 2π/ω0 14.81 s
Angle of the internal wave beam in the lower layer θ0 45o

Vertical location of the centre of the pycnocline hp 2 cm
Thickness of the pycnocline δp 1 cm
Kinematic viscosity ν 10−7 m2 s−1

Mass diffusivity κ 1.43 × 10−9 m2 s−1

Table 1. Set-up parameters that are common to all experiments.
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Figure 1. Sketch summarising the main features of the numerical set-up. Boundary conditions
are indicated. The thick solid lines and bold labels refer to the density and Brunt–Väisälä
profiles, as indicated. The horizontal dash-dotted lines and associated labels refer to the vertical
setting of the grid. The coordinate system (O, x, z) is sketched in the top left-hand corner. The
dotted, sloping lines starting at the left boundary sketch internal wave characteristics of the
beam.

strong but continuous change in density. The associated profile of the Brunt–Väisälä
frequency is defined by

N2(z) =
2√
π

g
∆p

δp

exp

[
−

(
z + hp

δp/2

)2
]

+

{
N2

0 , for − H ! z < −hp,

0, for − hp ! z ! 0,
(2.1)

where ∆p , δp and hp are the relative change in density across the pycnocline, the
thickness of the pycnocline and the depth of its centreline respectively, H is the total
water depth and N0 is the (constant) Brunt–Väisälä frequency of the lower layer.
Note that the initial profile N2(z) is not continuous, the discontinuity being however
smoothed out by diffusion over a few forcing periods. No noticeable modification of
N2(z) is to be seen over that time however.

In order to control the beam characteristics, we directly impose the wave beam at the
left boundary of the domain in the lower layer (hence we do not model the generation
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Designation of the experiment E1 E2 E3

Domain depth H (m) 0.95 0.8 0.8
Domain length L (m) 6 3 1.2
Along-beam forcing amplitude A (cm) 1.5 1.5 1.1
Vertical scale of the forcing Λ (cm) 60 26 15
Effective wavelengths of the forcing λx, λz (cm) 53.6 23.2 13.4
Transverse wavelength of the beam λ0 = λx sin θ0 (cm) 37.9 16.4 9.48
Reynolds number of the beam Re = ΛAω0/ν (×105) 3.8 1.6 0.7
Wave steepness of the beam 2πA sin θ0/λz 0.12 0.29 0.37
Relative density jump ∆p (%) 2.05 3.38 4
Maximum value of N (z)/ω0 max N (z)/ω0 11.2 14.3 15.5
Long-wave phase speed, two-layer case c∗ =

√
g∆php (cm s−1) 6.34 8.14 8.86

α parameter (see Akylas et al. 2007) α = N0λ0/c
∗ 4.0 1.6 0.96

γ parameter (see Gerkema 2001) γ = c∗/N0H 0.11 0.17 0.19
Duration of the experiments 16T0 12T0 12T0

Number of time steps per period T0/dt 400 800 250
Horizontal resolution dx (mm) 4 2 1
Fine vertical resolution dzm (mm) 0.4 0.3 0.2
Coarse vertical resolution dzM (mm) 4 4 3.5
Sponge layer length ls (m) 2 1 0.25

Table 2. Set-up parameters that vary from one experiment to another.

of the wave beam over topography, as in Gerkema 2001). According to the dispersion
relation of internal gravity waves, the energy of the wave beam propagates with
the group velocity making an angle θ0 = sin−1(ω0/N0) with respect to the horizontal,
where ω0 is the frequency of the wave beam (e.g. Lighthill 1978). We denote by T0

the corresponding forcing period. The velocity profile of this wave beam is

v(x = 0, z, t) = Π(z) cos

(
2πz

Λ
+ ω0t

)
cos

[
2π

3Λ

(
z +

H

2

)]
e0, (2.2)

with

Π(z) =

{
A ω0, for |z + H/2| ! 3Λ/4,

0, otherwise.
(2.3)

Here, A is the amplitude of the along-beam displacement of particles located on the
left boundary and e0 = (cos θ0, sin θ0) is the along-beam unit vector. This profile is
displayed on the left-hand side of figure 1. As shown in (2.3), the forcing is applied
on the vertical scale 3 Λ/2, which should therefore be smaller than the thickness of
the uniformly stratified lower layer. This accounts for the total water depth H to be
slightly larger for experiment E1 than for experiments E2 and E3 (see table 2).

The profile (2.2) is a simple model of the far-field velocity profile of the internal wave
field emitted by an oscillating object, the corresponding exact theoretical expression
has been derived by Thomas & Stevenson (1972). Here, the object would be the
bathymetry of the continental shelf at the location of critical slope (Gostiaux &
Dauxois 2007; Zhang, King & Swinney 2007). As shown by Staquet et al. (2006),
a wave vector can be locally defined within the wave beam, though a wave beam
is not a simple plane wave. This accounts for the profile (2.2) to be considered as
spatially monochromatic. The profile (2.2) was also designed such that its integrated
flux at the left boundary is always zero. In other words, it ensures that the free-surface
mean displacement is zero at each time, which greatly improves the stability of the
simulations.
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The effective horizontal and vertical wavelengths of the wave beam, denoted λx and
λz respectively, can be inferred from (2.2), by calculating the distance l between the
maximum and minimum values of |v| at a given time and defining λz as 2l and λx as
2l/tanθ . From the values of A and λz, the steepness of the waves defined by Thorpe
(1987) as the amplitude of the vertical displacement of the isopycnals multiplied by
the vertical wavenumber can be computed. The values are displayed in table 2 and
never exceed 1, implying that the beam is statically stable in all three experiments.

Three numerical experiments denoted E1, E2 and E3 were carried out, each of
which, as we shall see, is designed so that ISWs develop in the pycnocline with a
different modal structure along the vertical. The length and frequency scales in tables 1
and 2 were taken from the laboratory experiments. The choice of the parameter ∆p

for experiment E1 (displayed in table 2) was guided by the numerical simulations of
Gerkema (2001). The choice of the other parameters for this experiment is explained
in § 4, as well as those for experiments E2 and E3. Note that the length scale Λ in
(2.2) varies from one experiment to the other (for computational reasons), implying
that the length of the domain L varies as well to allow the pycnocline wave (evolving
into a train of ISWs) to propagate over long enough distances. In the following, a
pycnocline wave refers to an interfacial wave propagating in a pycnocline of finite
thickness.

At the right end of the domain, a sponge layer of length ls is implemented to absorb
the beam and the ISWs. This sponge layer consists of adding to the momentum
equations an additional term characterised by a relaxation time scale, which forces
the motions to evolve from their values at the boundary of the sponge layer facing the
interior of the domain (or inner boundary) to the value prescribed at the end of the
domain (zero in our case). In order to avoid reflections at the inner boundary back
to the interior of the domain, the relaxation time is progressively decreased from T0

at the inner boundary to T0/1000 at the boundary of the domain. This is the sponge
layer implemented by default in the MIT-gcm which corresponds to the Herbaut
formulation as described in Zhang & Marotzke (1999).

The value of the viscosity ν was set to 10−7 m2 s−1. As we show below, this value
ensures that mode-3 ISWs develop with significant amplitudes (for a realistic value of
ν = 10−6 m2 s−1, this mode is hardly visible and for ν ! 10−8 m2 s−1, spurious effects
occur at the smallest scales because of insufficient damping of those scales).

We use a grid with a constant horizontal resolution dx and with a vertical resolution
that varies smoothly from a coarse resolution dzM in the lower part to a fine resolution
dzm in the upper part of the domain, the middle of the transition zone being set to
z = −3hp .

3. Observations on the local generation of mode-1 ISWs
3.1. Preliminary considerations

In the works of Gerkema (2001) and Akylas et al. (2007) mentioned in the
Introduction, the phase speed of the interfacial waves generated as the beam impacts
the pycnocline is characterised by the phase speed of long waves propagating at a
pycnocline between two homogeneous fluids, namely c. =

√
g∆php , using notations

of the previous section. In these works, the thickness of the pycnocline is infinitesimal,
i.e. an interface.

At the region of beam impact, when the regime is still linear, Gerkema (2001)
showed from analytical solutions that the parameter, denoted γ , controlling the
displacement amplitude of the interface is the ratio of c. over the phase speed of
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the first internal wave mode that propagates in the lower layer, N0H/π. Thus, it was
found that γ = c./N0H , ignoring a factor π in front of c.. Gerkema (2001) found
that values of γ around $0.12 lead to the largest interfacial wave amplitudes for the
oceanic configuration he considered.

In Akylas et al. (2007), the displacement amplitude of the interface was found to
depend upon a parameter, denoted α, comparing the horizontal width of the beam
with the horizontal wavelength of the interfacial wave 2πc./ω0 (since at the beam
impact, the interfacial wave has the same frequency as the wave beam). In the present
case, λx is a good approximation of the beam horizontal width, so α can be expressed
as α = N0λ0/c

., introducing the transverse wavelength of the beam λ0 = λx sin θ0 and
ignoring again a factor 2π in front of c.. Akylas et al. (2007) showed from numerical
solutions of their soliton equation that maximum interfacial displacements occur
when α $ 1.

A third criterion was derived by Delisi & Orlanski (1975) for short waves, which
is (1.1). This criterion is nearly identical to that in terms of α mentioned above,
except that the expression of the phase velocity of short interfacial waves propagating
between two homogeneous fluids, which is g∆p/(2kx), is now used. This criterion will
not be discussed further.

To sum up, the works of Akylas et al. (2007) and Gerkema (2001) lead to two
parameters α and γ which control the displacement amplitude of long interfacial
waves, defined as

α =
N0λ0

c.
,

1

γ
=

HN0

c.
. (3.1)

These parameters are actually similar since they compare the phase speed c. of an
interfacial long wave between two homogeneous fluids with a typical phase speed
of the forcing wave. This is the horizontal phase speed of the wave beam in Akylas
et al. (2007) and the phase speed of its first mode in Gerkema (2001). The criteria
based on α and γ both ensure that the impinging of the internal wave beam upon
the interface leads to its maximum displacement.

These parameters have been designed in the context of an infinitely thin pycnocline,
hence supporting only mode-1 ISWs. As we will see in the following sections, only in
E1 do mode-1 ISWs develop, and therefore only for E1 are α and γ relevant. For
purposes of illustration however, the values of α and γ for all three experiments are
displayed in table 2.

3.2. Generation of mode-1 internal solitary waves

Results from experiment E1 are displayed in figure 2, through contours of a few
isopycnals around the pycnocline (figure 2a) and through the spatial distribution of
the horizontal velocity field over the whole water depth (figure 2b). This figure displays
two striking features. Figure 2(a) shows that a pycnocline wave is generated as the
internal wave beam, visible in figure 2(b), hits the pycnocline. This wave degenerates
into mode-1 ISWs. Figure 2(b) shows that the beam is strongly affected by the
interaction with the pycnocline. A part of the beam is reflected downwards at the base
of the pycnocline, while the remaining part is transmitted into the pycnocline. This
transmitted part is refracted because the local Brunt–Väisälä frequency is stronger
in the pycnocline; it reflects downwards on the upper boundary of the pycnocline
and is partly transmitted back into the lower layer, thus emerging further away than
the part that reflected at the base of the pycnocline (see Mathur & Peacock 2009
for a detailed study of this process). Hence, the incident beam decomposes into two
beams after reflecting from the pycnocline, resulting in the spreading of the beam
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Figure 2. Generation of a mode-1 ISW by an internal wave beam in experiment E1.
(a) Magnification of the isopycnals around the height z = hp , with a train of three deformations
explicitly indicated by arrows (the leading deformation has almost passed by the rear
deformation of the preceding train). (b) Horizontal velocity field allowing to locate the internal
wave beam; values range from −7.5mms−1 (blue) to 7.5 mm s−1 (red).

energy in the lower layer. Gerkema (2001) also concluded from his linear solutions
that ‘the internal-beam energy gets spread all over the domain’. Note also that the
Eulerian mean flow induced by the wave beam is weak, being at most 20 % of the
beam phase velocity at the impact zone and decaying downstream, with an associated
Richardson number much larger than 1. This Eulerian drift will therefore not be
considered hereafter.

The values of α and γ defined by (3.2) have been computed for E1. We found
α = 3.6, which is of the order of 1 as predicted by Akylas et al. (2007), and γ equal
to 0.11, which is close to the value obtained by Gerkema (2001). This shows that,
although the expressions of α and γ rely on approximations (the pycnocline wave
velocity is approximated by its long-wave expression between homogeneous fluids,
the non-hydrostatic approximation is used and the thickness of the density jump is
zero), these parameters are good indicators to predict whether optimal conditions are
met for ISW generation.

The temporal development of the nonlinear dynamics of the pycnocline wave
is displayed in figure 3 via space–time and space–frequency diagrams. Figure 3(a)
displays the displacement of the isopycnal located in the middle of the pycnocline
in a distance–time diagram. The horizontal axis is scaled by the horizontal effective
wavelength of the incoming beam λx , while the unit of the vertical axis is the forcing
period T0. In figure 3(b), the power spectral density of this displacement is displayed
in a distance–frequency diagram. The vertical axis is scaled by the forcing frequency
ω0 for a clearer detection of harmonic frequencies of ω0 by nonlinear effects.

Figures 2 and 3 show that the pycnocline dynamics can be decomposed into
three stages. (i) As noted above, the beam impinges on the pycnocline and part
of its energy is transmitted into the pycnocline, the remaining part being reflected
(figure 2b). The transmitted beam excites a pycnocline wave and this generation
process is essentially linear, as argued earlier by Gerkema (2001) and Akylas et al.
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Figure 3. Temporal analysis of the pycnocline displacement for E1. (a) The (x, t) plot of the
vertical displacement of the isopycnal located at the centre of the pycnocline (whose depth at
rest is z = −hp). The vertical displacement is scaled by hp , T0 is the period of the forcing beam,
and λx is the effective horizontal wavelength of that beam. (b) The (x, ω) plot of the power
spectral density of (a), computed as the squared modulus of the temporal Fourier transform
of the pycnocline displacement and scaled by its maximum value.

(2007). As shown in figure 3(b), indeed, the dominant frequency for x/λx " 1 is
the forcing frequency. (ii) Approximately one λx further, i.e. for 1 " x/λx " 2, this
pycnocline wave propagates horizontally and steepens, a nonlinear effect. Such a
steep front can be seen in figure 2(a), at location x/λx = 1.5. The growing importance
of nonlinearity is also evident from figure 3(b), which shows that higher harmonics
of ω0 are being developed during this stage. Since 2ω0 ≈ 0.8 rad s−1 >N0, the now
nonlinear pycnocline wave remains trapped in the pycnocline and grows in amplitude
due to the continuous internal wave beam forcing. (iii) Finally, further away (for
x/λx # 2), the large amplitude pycnocline wave disintegrates into trains of three
shorter, amplitude-ordered and solitary-like deformations. This is indicated by arrows
in figure 2(a). The largest deformations propagate faster than the smallest ones, hence
the amplitude ordering. This can be seen in the pattern in figure 3(a), for example for
2 <x/λx < 4, where the different propagation speeds manifest themselves in different
slopes of the lines following the deformations.

These ISWs eventually decay, possibly because of viscosity, although radiation of
internal waves in the lower stratified layer might play a role. The latter phenomenon
is actually visible in figure 2(b), where a low-amplitude signature of radiated waves
outside the main envelope of the beam can be detected close to the pycnocline. To
rule out the possibility of a viscous decay, let us introduce the e-folding viscous decay
length scale of the amplitude, denoted ξ . Assuming that the ISW may be modelled
as an internal gravity wave of frequency ω̂ > N0 and horizontal wavenumber k̂
propagating in the pycnocline of the Brunt–Väisälä frequency N̂ , ξ is given by
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(e.g. Lighthill 1978, p. 272)

ξ =
1

ν

(
ω̂

k̂

)3
√

N̂2 − ω̂2

N̂3
. (3.2)

The ratio ω̂/k̂ is the horizontal phase velocity of the wave and, as we shall see in
the next section, is well approximated by the horizontal phase velocity of the beam
ω0/kx . The time 2π/ω̂ is the typical temporal width of the ISW and, from figure 3(a),
can be estimated as T0/3. Using N̂ = 4 rad s−1 as a typical measure of the Brunt–
Väisälä frequency in the pycnocline, we get ξ =28 m ≈ 52λx , which is much larger
than the length of the domain L =6 m ≈ 11λx . Hence, viscosity can be ignored in this
experiment.

4. How to control the mode number: a ‘far-field’ approach
4.1. Heuristic considerations: the modal decomposition

In the present case of a pycnocline of finite thickness, the modal decomposition
provides a simple method to study the structure and characteristics of the full internal
gravity wave field that develops over the total water depth. We shall show in this
section that this method also provides a useful heuristical tool to design a numerical
experiment so that mode-1 ISWs develop.

For the sake of simplicity, we will make a rigid-lid approximation. Indeed, in all
our experiments, the free-surface displacement never exceeds 0.2 mm, which is two
orders of magnitude smaller than the thickness of the upper homogeneous layer hp .

We briefly recall the principles of the modal decomposition (see e.g. Leblond &
Mysak 1978 for detail). When searching for a vertical velocity solution of the linear
inviscid Boussinesq equations of the form

w(x, z, t) = W (z) exp i(Kx − Ωt) (4.1)

with K > 0 as we are only interested in rightward-propagating waves, it can be shown
that W and K satisfy the eigenvalue problem:

d2W

dz2
+ K2 N2(z) − Ω2

Ω2
W = 0, (4.2a)

W |z=0 = W |z=−H = 0. (4.2b)

The system of (4.2a) and (4.2b) forms a Sturm–Liouville problem and has an infinite
sequence of modes, of eigenfunctions Wn associated with eigenvalues Kn (n being
the mode number). The general solution for w limited to rightward-propagating
components can therefore be written as

w(x, z, t) =
∞∑

n=0

anWn(z) exp i(Knx − Ωt), (4.3)

where the coefficients (an), n ∈ !, are the amplitude of the modes. Solving (4.2a) and
(4.2b) then requires N(z) and Ω as input parameters which determine Wn and Kn for
each mode n (setting K and retrieving Ωn would also have been possible). The phase
speeds of each mode are then cn = Ω/Kn (or Ωn/K).

The case of experiment E1 is now considered to illustrate how we use heuristically
this method to determine the parameter set that favours the development of a mode-1
ISW.
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Figure 4. Phase speeds of the first three modes c1, c2 and c3 for experiment E1 computed
from (4.2a) and (4.2b) as a function of Ω and for N (z) given by (2.1). The phase speeds and
Ω are scaled by the phase speed vφ and frequency ω0 of the wave beam, respectively. The
vertical dashed line marks the location where Ω = N0.

In the work of Akylas et al. (2007), the maximum interfacial displacement is
obtained when the horizontal width of the beam (which is well approximated by λx

in our case) matches the horizontal wavelength of the interfacial wave. Since this
wave is forced at the beam frequency, its horizontal phase speed therefore matches
the horizontal phase speed of the beam. As we now show, when the pycnocline is of
finite thickness and weakly nonlinear effects have developed, the mode-1 pycnocline
wave also has the same horizontal phase speed as the incoming beam.

To apply the modal decomposition to experiment E1, we assume that an ISW may
be modelled as a superposition of linear internal gravity waves which are trapped
within the pycnocline, i.e. of frequency comprised between N0 and max(N (z)). We
solve (4.2a) and (4.2b) with Ω varying and display the phase speeds of the first three
modes c1, c2 and c3 versus Ω in figure 4. The figure shows that the phase speed
decreases as Ω increases, with a sharp transition when Ω = N0 (i.e. for Ω/ω0 =

√
2):

the decrease rate of the phase speeds drops, corresponding to the modes being trapped
in the pycnocline. For Ω $ N0, all three phase speeds evolve quasi-linearly, with Ω ,
c2 and c3 being nearly constant and distinct from c1. The velocity c1 is very close to
the horizontal phase velocity vφ of the wave beam as Ω increases.

Hence, to select a mode-1 ISW, the internal wave beam should be designed such
that its horizontal phase speed is close to c1 (computed from modal decomposition
for Ω ∈]N0, max(N(z))[, N(z) being given). This is how experiment E1 was designed,
adjusting also the wave beam amplitude so that a strong deformation is induced in
the pycnocline while ensuring that the beam remains stable.

We will now make the conjecture that in order to excite mode-n ISWs, the horizontal
phase speed of the internal wave beam should be within the range of values of the
phase speeds of the mode-n internal waves when trapped in the pycnocline (i.e. with
frequency Ω ∈]N0, max(N (z))[). This conjecture will be verified next.

4.2. Application to the generation of mode-2 and mode-3 internal solitary waves

We now focus on experiments E2 and E3. In figures 5(a) and 5(b), the phase speeds
of the first three modes are plotted versus Ω for experiments E2 and E3, respectively.
These phase speeds display the same behaviour as for experiment E1, c2 and c3

reaching a nearly constant value as soon as Ω exceeds N0. We find that for Ω > N0,
vφ (≈1.57 cm s−1) in experiment E2 is closer to c2 (≈1.5 cm s−1 as far as we computed
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Figure 5. Same as in figure 4 but for experiments (a) E2 and (b) E3.
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Figure 6. Generation of ISWs by an internal wave beam in experiments E2 and E3. This
figure is similar to figure 2 for experiment E1. In (a), mode-2 ISWs develop and a train
with three visible deformations is highlighted with arrows. In (c), mode-3 ISWs are framed,
consisting of a train with two visible deformations. In (b), values range from −5 mm s−1 (blue)
to 5 mm s−1 (red) and in (d ), values range from −4 mm s−1 (blue) to 4 mm s−1 (red).

it) in this case. When the modal decomposition is applied to E3, the value of c3

for Ω > N0 (≈1 cm s−1) here is the closest to vφ (≈0.905 cm s−1). Like E1 with c1,
experiments E2 and E3 were actually designed from the computation of c2 and c3

respectively, such that the horizontal phase speed of the wave beam matches c2 in E2
and c3 in E3.

Visualisations of the fields similar to figure 2 are displayed in figure 6 for each
experiment. Figure 6 shows that ISWs develop again from the impact of the wave
beam on the pycnocline (figure 6b, d ). However, the vertical structure of the pycnocline
wave is now a mode 2 for E2 (figure 6a) and a mode 3 in E3 (figure 6c), the number
of visible deformations per train being three in the former case and two in the latter.
The amplitude of the mode-3 ISWs is actually rather weak and, as we will see next,
very sensitive to viscous effects. We verified that the three stages of the process going
from a linear to a weakly nonlinear internal wave trapped in the pycnocline, described
in § 3.2, also occur in these two experiments.

In order to validate a posteriori the value of ν we chose, we recall (3.2). For E2, using
2π/ω̂ = T0/8 and N̂ = 5.5 rad s−1, we obtain ξ = 1 m ≈ 4.3λx , which is now smaller than
the length of the domain (L = 3 m ≈ 13λx). For experiment E3, using 2π/ω̂ = T0/6 and
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Figure 7. Same as in figure 6 but for experiments E2 (a, b) and E3 (c, d ), magnified around
the zones of impact of the internal wave beam in order to emphasise the refraction of the
beam during its propagation in the pycnocline.

N̂ = 6 rad s−1 yields ξ =0.18 m ≈ 1.3λx , which is even smaller compared to L (since
L =1.2 m ≈ 9λx). The values of ω̂ for E2 and E3 have been estimated from figure 6.
The orders of magnitude for ξ show that for E2 and E3, viscosity plays an important
role in the decay of the ISWs. Hence, the use for ν of the realistic value 10−6 m2 s−1

would have led to a very quick attenuation of mode-2 ISWs and prevented the
development of mode-3 ISWs, as we verified.

5. How to control the mode number: a ‘near-field’ approach
The approach developed above addresses the ‘far-field’ evolution of the dynamics

within the pycnocline, when nonlinear waves have developed. The approach we
consider now may be referred to as the ‘near-field’ evolution, in the sense that we
analyse the deformation of the pycnocline at the beam impact.

The simple model we shall derive is motivated by a careful inspection of the impact
zone of the internal wave beam in experiments E2 and E3, which is magnified in
figure 7. The beam is refracted as it gets into the pycnocline, since its frequency and
horizontal wavelength remain unchanged (the dynamics being linear and the changes
of the medium occurring along z only) whereas the local Brunt–Väisälä frequency
increases. We shall see that conditions for optimal forcing of the pycnocline wave by
the beam can be derived, which also set the vertical structure (i.e. mode number) of
the pycnocline wave.

The model is based on three approximations: (i) we focus on the initial phase of
wave generation in the pycnocline, so that the dynamics may be assumed linear;
(ii) we also consider a simple plane wave instead of a wave beam; (iii) we assume
that the profile of the Brunt–Väisälä frequency is a piecewise continuous function
consisting of three parts, namely

N2
3L(z) =






N2
0 , for − H ! z < −hp − δp

2
,

N2
i , for − hp − δp

2
! z ! −hp +

δp

2
,

0, for − hp +
δp

2
< z ! 0,

(5.1)

where Ni is the Brunt–Väisälä frequency within the pycnocline. The value of Ni has
been chosen in order to preserve the phase shift between the induced displacements
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Figure 8. Sketches illustrating the conditions for the generation of mode-2 (a) and mode-3
(b) internal waves trapped in a pycnocline using the linear, three-layer model presented in
§ 5. The shaded area is the pycnocline, the thick dashed lines represent isophases of the
displacement separated by a distance λx/2 (phase shift π) and the dotted lines sketch the
displacements induced by the plane wave in the pycnocline, highlighting the selected vertical
structure.

of the top and bottom of the pycnocline. In other words, let us assume that in our
numerical experiments, an internal wave characteristic impinges on the bottom of
the pycnocline at a location x0 and is refracted until being reflected against the top
of the pycnocline at the location x0 + "x. Our three-layer model is designed such
that the locations x0 and x0 + "x are preserved, although the characteristics are now
piecewise straight lines. The slope of a characteristic is equal to

√
ω2

0/(N
2(z) − ω2

0) and
"x is computed by integrating the path of a characteristic between the boundaries of
the pycnocline, which we set to be at depths z1 = −hp − δp/2 and z2 = −hp + δp/2:

"x =

∫ z2

z1

dz

√
N2(z) − ω2

0

ω2
0

. (5.2)

In the case of a pycnocline characterised by the constant Brunt–Väisälä frequency Ni ,
this expression reduces to "x = δp

√
(N2

i − ω2
0)/ω2

0. Matching these two expressions
then leads to the following expression for Ni:

N2
i = ω2

0 +
ω2

0

δ2
p

(∫ z2

z1

dz

√
N2(z) − ω2

0

ω2
0

)2

. (5.3)

We show that a Bragg-like resonance condition based on simple geometric
arguments can be obtained for the selection of the mode. At depth z = −hp − δp/2,
upon entering the pycnocline, the angle of propagation of the energy of the plane
wave is changed from θ0 to θi = arcsin(ω0/Ni) < θ0, due to refraction. Leaving aside
the mode-1 case, which does not seem to be tractable with the present approach, we
now distinguish the two cases we investigate, starting with the forcing of a mode-2
pycnocline wave.

Two isophases of the incident plane wave are plotted in figure 8(a) as well as two
isopycnals at the top and bottom of the pycnocline. If the horizontal wavelength of
the plane wave λx is such that λx/2 = "x, the induced displacements of the top and
bottom of the pycnocline are opposite in phase (phase shift of π), making the vertical
structure of the refracted wave in the pycnocline similar to that of a mode-2 internal
wave. Figure 8(a) only displays wave characteristics until one reaches the top of the
pycnocline but the wave characteristics can be drawn further along the pycnocline
without altering the pattern of a mode-2 internal wave. The subsequent steps are



16 N. Grisouard, C. Staquet and T. Gerkema

Experiment E2 E3

n 2 3
Ni (rad s−1) 5.24 5.68
µn 0.94 1.00

Table 3. Verification of relation (5.6) for experiments E2 and E3. Here n is the mode number
of the pycnocline wave, Ni (defined by (5.3)) is the local Brunt–Väisälä frequency in the
pycnocline and the parameter µn is the left-hand side of relation (5.6).

similar to those of any ISW generation: the isopycnals forming the symmetrical
pattern, typical of a mode-2 wave, steepen and split up into trains of mode-2 ISWs.
Since "x = δp/tanθi , a mode-2 pycnocline wave is therefore forced if

λxtan θi

2δp

= 1. (5.4)

The case of a mode-3 pycnocline wave is sketched in figure 8(b). The displacements
of the top and bottom of the pycnocline have a phase shift of 2π if "x = λx , implying
that within the pycnocline, the displacement of the middle isopycnal is opposite in
phase with the displacements of the top and bottom ones, as for a mode-3 wave.
Hence, a mode-3 pycnocline wave is forced if

λxtan θi

δp

= 1. (5.5)

The two conditions described here can be gathered into a single one and extended
to any mode n $ 2 by noting that the displacements of the top and bottom of the
pycnocline should have a phase shift of (n − 1)π for the vertical structure of the wave
to resemble a mode-n internal wave trapped in the pycnocline. Conditions (5.4) and
(5.5) can thus be generalised to any mode number n (n $ 2) as

n − 1

2

λx tan θi

δp

= 1. (5.6)

The validity of relation (5.6) for the two experiments E2 and E3 is checked by
computing the left-hand side of this relation, which we denote by µn. The values of
µ2 and µ3 are displayed in table 3: µ2 departs from the value of 1 by 6 % and µ3 by
less than 1 %, attesting that relation (5.6) is well satisfied for these two experiments.
This relation explains why a beam with a short wavelength generates high-mode
pycnocline waves or, equivalently, why such high-mode waves are favoured by a
strongly stratified pycnocline.

Relation (5.6) has not been checked numerically for higher modes as the conditions
to generate a displacement that is large enough for nonlinear effects occurring later
are then much more difficult to achieve and would be associated with a costly increase
in resolution. Note that this approach does not apply to mode-1 pycnocline waves. It
relies indeed on the phase shift between the displacements along the top and bottom
of the pycnocline, while a mode-1 wave induces vertical displacements that are all in
phase along the vertical. An indication however that mode-1 ISWs can be generated
is when the value of µ2 is noticeably higher than one, since µ2 = 1 when mode-2
ISWs are generated.

It is not clear to us how to relate this ‘near-field’ approach to the ‘far-field’ approach
derived in the previous section. It is useful however to bring together the conclusions
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of the two approaches. Writing vφ = cn on the one hand, and relation (5.6) on the
other hand, allows one to derive an approximate analytical expression for cn, namely

cn =
δp

√
N2

i − ω2
0

π(n − 1)
. (5.7)

This is obtained by expressing (5.6) in terms of vφ (= ω0λx/2π), writing the dispersion

relation as ω0 =Ni sin θi and therefore Ni cos θi =
√

N2
i − ω2

0. As Ni , ω0 for the three
experiments, (5.7) can be simplified to cn = δpNi/(π(n − 1)). Numerical estimate of
cn given by (5.7) for the parameters of table 2 yields c2 ≈ 1.66 cm s−1 for E2 and
c3 ≈ 0.901 cm s−1 for E3, which is in good agreement with the values given in § 4.2.

6. Discussion
6.1. Bandwidths of the selection conditions

This paper aims at determining optimal conditions to generate mode-n ISWs.
However, the bandwidths of these conditions have not been discussed. In other
words, when for a given situation, µn < 1 <µn+1 and/or cn < vφ <cn+1 in the trapped
regime, it is yet to be determined whether ISWs develop at all and, if they do,
which of the two n or n + 1 modes would preferentially develop and what would
be their amplitudes. From a qualitative point of view, the answer must depend on
several parameters, such as the ratio |cn − vφ |/|vφ − cn+1| in the trapped regime or any
quantity comparing the distances between vφ and the different phase speeds in that
regime. From a quantitative point of view, the computation of the amplitude of the
trapped modes would provide a precise answer but would be quite involved as the
nonlinear nature of these waves implies that the motion cannot be easily projected
on an orthogonal basis of linear wave modes at a given frequency. The projection of
the motion on an orthogonal basis of nonlinear modes would require to know which
model (such as a high-order KdV model) describes it accurately, which has not been
done for the present paper.

To get some indication of the bandwidths of the selection conditions (i.e. of the
near-field and far-field conditions), we rather performed another numerical experiment
(not shown). This experiment involves a beam, for which vφ is the same as in E1
but the stratification profile is the same as in E2. From the near-field condition (5.4),
one finds µ2 = 2.17 > 1, which implies that mode-1 ISWs can be generated (as the
near-field condition does not apply to mode-1 ISWs, it is not possible to be more
specific). Regarding the far-field condition, figure 5(a) for E2 shows that vφ is halfway
between c1 and c2 in the trapped regime (since vφ for E1 is 2.3 times larger than for
E2). Therefore, we are in an intermediate regime.

Observation of the pycnocline motion in this experiment shows a dominant mode-1
pattern for the ISWs, with an amplitude of the induced isopycnal displacement
of about 3 mm. Superposed on this isopycnal displacement is a secondary pattern,
typical of mode-2 ISWs. Mode-2 isopycnal displacements (measured with respect to
the displacements, already induced by the mode-1 ISWs) are less than 1 mm. On the
basis of this crude estimate, we infer that the two bandwidths for the far-field selection
conditions overlap but the bandwidth for the selection of mode-1 ISWs seems to be
larger than that for mode-2 ISWs.

Two conjectures can be proposed based on this example: first, that when in
an intermediate case, ISWs can be generated and the bandwidths of the selection
conditions for each mode number can overlap; second, that the lower the mode of
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Figure 9. Typical stratification observed in the Bay of Biscay in mid-to-late summer.

the ISWs is, the broader the bandwidth of its selection condition might be. These
conjectures both seemed to be verified in a few other numerical tests that helped us
to derive our selection conditions.

6.2. Applicability of the selection conditions to an oceanic setting

This paper addresses fundamental aspects of the generation of ISWs by an internal
wave beam. However, let us recall that this problem was motivated by oceanic
observations. In this section, we apply the selection conditions to the more realistic
context of the Bay of Biscay and investigate whether these conditions can correctly
predict the observations. (As found by New & Pingree 1990, 1992, local generation in
the Bay of Biscay is associated with mode-1 ISWs.) We will also show that rotation
can be easily introduced in the far-field and near-field approaches.

The reference stratification profile we consider is a typical profile observed in
the Bay of Biscay in mid-to-late summer, when the seasonal pycnocline is best
developed and when local generation is observed. This reference profile (displayed
in figure 9) is characterised by a strong seasonal pycnocline whose maximal value
is 1.6 × 10−2 rad s−1 at 58 m depth. Note the presence of a permanent pycnocline
corresponding to increased values of N between roughly 400 m and 2000 m depth.
This profile has been deduced from data described in New (1988) and Pingree & New
(1991). The dominant forcing frequency in the Bay of Biscay is the semidiurnal tide
of frequency ωBB = 1.41 × 10−4 rad s−1, corresponding to a period of 12.42 h.

Let us see how the far-field condition applies to the configurations just described. In
order to compute the phase speeds of the different internal wave modes, we introduce
rotation in (4.2a),

d2W

dz2
+ K2 N2(z) − Ω2

Ω2 − f 2
45o

W (z) = 0, (6.1)

where f45o = 10−4 rad s−1 is the Coriolis parameter at a latitude of 45o. The rest of
the procedure is as in § 4.
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Figure 10. Phase speeds of the first two internal modes versus their frequency for the
stratification displayed in figure 9 and with rotation. The grey zone approximately corresponds
to the regime for which internal waves are trapped in the seasonal pycnocline. The dash-dotted
line displays the horizontal phase speed of the beam in the Bay of Biscay, estimated from
non-hydrostatic numerical simulations by Gerkema et al. (2004) and corresponding to a
horizontal wavelength of the beam of 15 km.

Before going into the details of the different regimes, let us set as a convention that a
mode-n wave of frequency Ω will be trapped in a given layer if (i) (N2−Ω2)/(Ω2−f 2

45o )
is positive throughout the layer and negative in the layers located immediately above
and below it and (ii) if Wn(z) (as defined in (4.2a)) has its absolute maximum value in
this layer. This trapped regime is shown in grey in figure 10. Note that for such high
frequencies, rotation could be neglected in (6.1) but has an important role in setting
the angle of the beam and therefore its horizontal wavelength. The typical phase
speeds for the mode-1 and mode-2 trapped internal waves are approximately 0.7 and
0.2 m s−1, respectively. In order to match these phase speeds, an internal tidal beam
of frequency ωBB should have a dominant horizontal wavelength of 31 and 9 km,
respectively. Observations being scarce, the dominant horizontal wavelength of the
beam in the Bay of Biscay just under the point of impact has to be estimated from
previous numerical simulations. For example, figure 7 of Gerkema, Lam & Maas
(2004) shows a beam, whose horizontal wavelength is about 15 km (as computed
from the horizontal dependency of the phase at a given vertical location). Regarding
the far-field condition, vφ is closer to c2 than to c1 in the trapped regime, the situation
being generally intermediate. The discussion at the end of § 6.1 shows that it is then
possible that mode-1 ISWs are generated, coexisting with mode-2 ISWs, which are
much harder to detect in the ocean.

We now move on to the near-field condition. Mode-1 ISWs are observed in the Bay
of Biscay and the near-field condition only applies for modes strictly higher than 1.
As stated earlier in § 5, µ2 should be noticeably higher than unity for mode-1 ISWs
to be possibly generated. Let us examine whether this condition can be satisfied in
the case of the Bay of Biscay. Assuming that the seasonal pycnocline is defined by
N(z) > 3.5 × 10−3 rad s−1, it is located between z1 = −158 m and z2 = −18 m, meaning
that the thickness of the pycnocline is δp = 140 m. As we are considering linear
dynamics, the only frequency we are considering is ωBB and the slope of the internal
wave characteristics is then

√
(ω2

BB − f 2
45o )/(N2 − ω2

BB). Therefore, using the same
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notation as in § 5, "x now has to verify the following condition:

"x =

∫ z2

z1

dz

√
N2(z) − ω2

BB

ω2
BB − f 2

45o

= δp

√
N2

i − ω2
BB

ω2
BB − f 2

45o

. (6.2)

Then, Ni is defined by

N2
i = ω2

BB +
ω2

BB − f 2
45o

δ2
p

(∫ z2

z1

dz

√
N2(z) − ω2

BB

ω2
BB − f 2

45o

)2

. (6.3)

We find Ni = 8.4 × 10−3 rad s−1. Once rotation is also included in the definition of
θi , the procedure is the same as in § 5. In order to satisfy µ2 = 1, the wave beam
should have a dominant horizontal wavelength of 24 km, which is higher than the
dominant horizontal wavelength of the beam in the Bay of Biscay as estimated
earlier. Moreover, in order to satisfy µ3 = 1, the wave beam should have a horizontal
wavelength of 12 km. The near-field condition therefore predicts here that we are
in an intermediate case between the generation of mode-2 and mode-3 ISWs. These
considerations lead us to the conclusion that this simple model is quantitatively less
suitable than the far-field approach when it comes to realistic conditions, one possible
reason being the large uncertainties on the parameters that enter the model.

In comparison, the arguments on which the far-field approach is based are much
more robust: for a given mode number n, trapped pycnocline waves with different
frequencies propagate with phase speeds that are close to each other, which is therefore
the approximate propagation speed of any mode-n ISW trapped in the pycnocline.
A beam (or any other disturbance) should therefore have a horizontal phase speed
that is close to this value to efficiently force mode-n ISWs (provided that the forcing
is strong enough for nonlinear effects to develop within its direct range).

7. Conclusion
We addressed the local generation of ISWs, when an internal wave beam impinges

on a pycnocline. Nonlinear, non-hydrostatic numerical experiments were conducted
for this purpose, the vertical density profile being continuous and made of a lower
layer with constant value N0 of the Brunt–Väisälä frequency, a pycnocline of finite
thickness and a thin homogeneous upper layer. This work complements previous
theoretical (Gerkema 2001; Akylas et al. 2007) and experimental (Delisi & Orlanski
1975) studies in which the thickness of the pycnocline was vanishingly small (i.e. an
interface).

We showed that ISWs can be generated and that the finite thickness of the
pycnocline, whose role is fundamental, allows different vertical modes to be excited,
depending on the parameters. We ran numerical experiments showing that modes-1, -2
or -3 internal solitary waves can develop. We next proposed two different approaches
to predict the conditions of occurrence of mode-n internal solitary waves.

In the ‘far-field’ approach, that is, when harmonics of the forcing frequency have
appeared, we showed that the observed mode-n weakly nonlinear pycnocline waves
have the same horizontal phase speed as the incident wave beam. We demonstrated
this result heuristically by using a modal decomposition based upon the actual
density profile and a frequency of value higher than N0. This result allowed us to
design numerical experiments so that a mode-1, -2 or -3 pycnocline wave develops, the
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density jump across the pycnocline increasing with the mode number (or equivalently,
the horizontal wavelength of the wave beam decreasing with the mode number).

One might wonder why the phase speed of a beam should be matched with the
phase speed of trapped waves, which are physically some distance away from the
beam. We observed in § 3.2 that the evolution towards ISWs actually takes one or two
wavelengths only, a much shorter distance than for weakly nonlinear waves described
e.g. by a KdV model. This is very likely due to the large amplitude of the forcing,
which allows the development of nonlinear structures in its vicinity that propagate
with the same speed as the forcing phase speed.

The ‘near-field’ approach consists of deriving simple geometrical conditions ensuring
that a mode-n wave develops at the beam impact (the model holds for n $ 2 only). In
this approach, the dynamics is linear, a simple plane wave is considered in place of
a wave beam and a piecewise three-layer stratification is assumed. We showed that
a mode-n wave is forced if a simple relation is satisfied which involves the thickness
of the pycnocline, the angle of the refracted internal wave in the pycnocline and
the horizontal wavelength of this wave. In spite of its simplicity, this model gave
a good quantitative agreement with our numerical data for n $ 2. It explains why
a beam with a short wavelength generates high-mode waves or, equivalently, why
such high-mode waves are favoured by a strongly stratified pycnocline. When related
to the far-field approach, this model provides a simple analytical expression for the
phase speed of a mode-n ISW.

We discussed the more general situation in which the wave beam has an intermediate
phase speed between those of modes n and n + 1. We conjectured from an example
that both modes could be selected in this case and that the lower the mode number
is, the larger is its bandwidth. The computation of the amplitude of those modes
is necessary to answer precisely this problem. This requires solving the nonlinear
non-hydrostatic Boussinesq equations forced by the wave beam, a rather involved
task.

The predictions of the two selection conditions derived in this paper were eventually
examined in the more realistic context of the Bay of Biscay, in which mode-1 ISWs
are observed. The far-field approach predicts a situation that is intermediate between
the selection of mode-1 and mode-2 ISWs and an agreement with the observations
is therefore possible (for more details, see Grisouard & Staquet 2010). In contrast,
the near-field approach does not seem to be quantitatively reliable when applied
to this realistic configuration, as it predicts a situation that is intermediate between
the selection of mode-2 and mode-3 ISWs. However, the application of the latter
selection rule requires several simplifications, which leads to strong uncertainties in
the parameters that enter the model.

Independent of the validity of these selection rules, it remains to investigate whether
the mechanism leading to the generation of ISWs remains valid in a real ocean. The
beams may have a three-dimensional structure and the generation process as a
whole might be sensitive to perturbations from other structures such as eddies or
other internal waves. The latter is the subject of a study by Grisouard & Staquet
(2010).
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