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Abstract

This paper deals with the numerical veri�cation of the theory developed by Derzho and Grimshaw (DG) (1997,
Phys. Fluids 9(11), 3378–3385) regarding solitary waves in strati�ed uids with recirculation regions. The Boussinesq
approximation is made and the strati�cation is chosen such that the Brunt-V�ais�al�a frequency di�ers only slightly from
uniform strati�cation. To establish the consistency of the numerical scheme the usual KdV and mKdV solutions are tested
�rst and then the solutions obtained by DG are considered. It is found that these waves remain of permanent form and
are stationary when viewed at their corresponding phase speed. The recirculation region remains stagnant to �rst order as
predicted by DG. c© 1999 The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.

1. Introduction

Solitary wave propagation in strati�ed uids may be characterized by the depth of the uid,
ranging from shallow to deep, and the magnitude of nonlinearity, which is related to the amplitude
of the disturbance. Small amplitude disturbances are usually treated in a weakly nonlinear long wave
approximation, typically leading to a Korteweg–de Vries type of equation for shallow uids, or to
the intermediate depth equation for deep uids (see, for instance the recent review by Grimshaw,
1997).
Inclusion of higher-order terms in the asymptotic expansion enables the theory to be extended to

larger amplitude disturbances. For instance Gear and Grimshaw (1983) have extended the theory for
shallow uids to second order. However, this amplitude expansion approach is generally not suitable
for large amplitude waves, and in particular fails to generate solutions with vortex cores. Further,
the analysis of Pelinovsky and Grimshaw (1997) indicates that solitary waves of large amplitudes
may be unstable, and evolve into structures with vortex cores.
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The study of steady internal waves is most accessible through the Dubreil–Jacotin–Long equation
(Dubreil-Jacotin, 1937; Long, 1953), which we will denote as Long’s equation as is customary.
Long’s equation is applicable for the study of steady solitary waves in a strati�ed, incompressible
and inviscid uid, when the solution has no closed streamlines, and there is no upstream inuence
on the ow.
Long’s equation is linear for uniform strati�cation in the Boussinesq approximation yielding an

equation similar to that for linear waves (Chan et al., 1982; Leonov and Miropol’skiy, 1975). It
follows that solitary waves are then precluded. While for incompressible uids and constant N the
Boussinesq approximation removes the existence of solitary waves, Long and Morton (1966) and
Grimshaw (1980/81) have shown, that on one hand allowance of the slightest compressibility makes
solitary waves possible. On the other hand, a small departure from the Boussinesq approximation, or
a small departure from uniform strati�cation again make solitary waves possible (see, for instance,
Benney and Ko, 1978; Grimshaw and Yi, 1991). We make the latter choice here.
For a uid of �nite depth with rigid top and bottom boundaries, the absence of recirculation

regions limits Long’s equation to the study of waves of amplitudes less than a critical amplitude
A∗, for which a stagnation point is situated at the upper boundary for a wave of depression (and at
the lower boundary for a wave of elevation). Note that we consider waves of depression henceforth;
waves of elevation are analogous. For amplitudes greater than A∗ a vortex will be generated near
the upper boundary.
The appearance of closed streamlines terminates the strict validity of solutions to Long’s equation,

but Derzho and Grimshaw (DG) (1997) have shown that the range of solitary wave solutions of
Long’s equation can be extended to solutions possessing vortex cores. The usual solitary wave
solution valid in the outer region is matched to another solution in the inner region, thereby extending
the study of solitary waves to amplitudes in excess of A∗. To achieve this, it is necessary to include a
small vortex core region near the upper boundary, in which the ow is stagnant to leading order. The
solutions so obtained exhibit amplitude-width relationships characteristic for observed large amplitude
waves, which are known to possess closed streamlines and a pocket of recirculating ow; the width
of the disturbance increases with amplitude.
The aim of this paper is to verify the existence and permanence of such asymptotic solutions by

solving the time-dependent governing equations over a long period. The outline of this paper is as
follows. In Section 2 the governing equations are derived and in Section 3 the steady asymptotic
solutions are obtained. In Sections 4 and 5 the results and conclusions are stated.

2. Governing equations

Consider a two-dimensional inviscid incompressible uid of undisturbed depth h, with rigid upper
and lower boundaries. The governing equations are,

�{ut + u · ∇u}=−px; (1)

�{wt + u · ∇w}=−pz − �g; (2)

�t + u · ∇�= 0; (3)

∇ · u = 0 (4)
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where u=(u; w) is the velocity vector, p the pressure, � the total density and the cartesian coordinate
system is orientated such that the x-axis is horizontal and the z-axis points vertically upward. We
introduce a streamfunction  , with u = − z and w =  x, such that the continuity equation (4) is
identically satis�ed.
Next we chose a reference frame moving with the wave in the positive x-direction at the phase

speed c. Thus, let

s= x − c t; (5)

and introduce a modi�ed streamfunction �(s; z) by

 (s; z) =−c z + �(s; z): (6)

The conservation of density equation (3) for steady ow then implies that

�= �(�): (7)

Elimination of the pressure between the momentum equations (1) and (2) and making use of the
transformation (5)–(7) yields a single equation for the streamfunction �:

J
[
�ss + �zz +

1
�
d�
d�

(
gz +

1
2
(�2s + �2z)

)
; �
]
= 0;

where J , the Jacobian operator, is given by J (A; B) = As Bz − Az Bs.
It follows that for a vorticity function G(�), determined from upstream conditions, the stream-

function � has to satisfy the following nonlinear equation, derived by Dubreil-Jacotin (1937) and
Long (1953):

�ss + �zz +
1
�
d�
d�

(
g z +

1
2
(�2s + �2z)

)
= G(�): (8)

Note that Long’s equation assumes all streamlines originate upstream. The function G can be obtained
on those streamlines originating upstream, where we assume that  → 0, so that

� → c z; (9)

� → ��(z); (10)

where ��(z) is the basic density pro�le. It follows that

�(�) = ��(�=c); (11)

G(�) =
1
�
d�
d�

(
g�
c
+
1
2
c2
)
: (12)

Introduction of dimensionless coordinates based on the height of undisturbed uid h and the phase
speed c,

�′ =
�
c h

; s′ =
s
h
; z′ =

z
h

(13)

and considering a basic density �eld close to uniform strati�cation

��(z′) = �0(1− �z′ − �2f(z′)) (14)
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yields for Eq. (8) after omitting the prime superscripts

�ss + �zz + � (�− z)(1 + �f�(�) + ��)− 1
2�(�

2
s + �2z − 1) + O(�2) = 0; (15)

where

�= �gh=c2: (16)

� is an inverse Froude number, and scales with unity with respect to the small parameter �, which
characterizes the weak strati�cation.
If the Boussinesq approximation is made Eq. (8) reduces to

�ss + �zz +
1
�0

d�
d�

g z = G(�) (17)

and Eq. (15) becomes

�ss + �zz + � (�− z)(1 + �f�(�)) + O(�2) = 0; (18)

where the term �f�(�) constitutes the only nonlinearity of Long’s equation to this order in �. This
indicates that for linear strati�cation Long’s equation is linear, prohibiting the existence of solitary
waves. The boundary conditions are:

�x = 0 on z = 0; 1; (19)

� ∼ z as x → ±∞: (20)

Eqs. (18)–(20) provide a complete formulation of the problem if all streamlines originate upstream,
thereby excluding the possible presence of a recirculation region. Derzho and Grimshaw (1997) have
shown that a recirculation region can be incorporated by assuming that inside of this region � is
constant and then the vorticity equation (8) reduces to

�ss + �zz = g(�)

inside of this region, where g is a function of � yet to be determined.

3. Derivation of the steady solitary wave solutions

While DG derive a solution from (15) without necessarily making the Boussinesq approximation,
we will exploit the Boussinesq approximation here. The following derivation will therefore parallel
the derivation given in DG and can be obtained directly by taking the Boussinesq limit of the
solution given by DG. Solitary wave solutions are sought, whose width is much greater than the
channel depth. We introduce the stretched variable X = � s, and let the strati�cation parameter �
scale with �2. An asymptotic expansion of � and � in terms of �2

�(X; z) ∼
∞∑
k=0

�2k �k(X; z); (21)

� ∼
∞∑
k=0

�2k �k ; (22)
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when substituted into (18) yields the equation

�0zz + �0(�0 − z) = 0

for the zeroth order, which has to satisfy the boundary conditions (19) and (20) giving

�0 = z + A(X ) sin(� z); (23)

�0 = �2; (24)

where only the �rst vertical mode is considered here. At the next order in the expansion one gets

�1zz + �2 �1 + F1 = 0; F1 = AXXW + �1AW + �2AWf�(�0);

where W = sin(�z), from which an amplitude equation is determined by exploiting the appropriate
compatibility condition,∫ 1

0
F1W dz = 0; (25)

yielding the following equation for A:

AXX + �1A+M (A) = 0; (26)

where 1

M (A) = 2�2
∫ 1

0
A sin2(�z)f�(z + Asin(�z))dz: (27)

Eq. (26) can be integrated once to give

A2X + �1A2 + 2
∫ A

0
M (A′)dA′ = 0: (28)

It is clear now that if f(z′) = 0, corresponding to linear strati�cation, Eq. (26) is linear.
For amplitudes greater than A∗=1=� a recirculation region is generated in which the ow reverses,

since then �0z can change sign. This amplitude is reached at the upper boundary for a wave of
depression. The ow �eld is now divided into three regions, an outer region where Eqs. (26) and
(18) hold, an inner region and a recirculation core which are discussed next. Assuming the width
of the inner solution is large compared to the depth and the amplitude is close to A∗, the solution
in the inner region is

A(�) = A∗ + �B(�) with 06B(�)61; (29)

where �= �s is another stretched variable. Clearly ��� and then ��2 = �2, so that the width of the
inner zone is smaller than the total length scale of the wave and tends to zero as � → 0. In order
to derive an approximative governing equation for the inner solution the depth of the vortex core �
is assumed small, �= �F(�), where � is another small parameter and F(�) is a function describing
the shape of the vortex boundary (i.e. the vortex core is given by z = 1 − � for |�|¡� 0, where
� 0 is yet to be determined). It is shown by DG that an optimal balance of parameters occurs when

1 Note that M (A) has the correct factor 2�2, cf. Eq. (31) in Derzho and Grimshaw (1997).
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�=�2=3, �=�1=3 and �=�4=3. Substituting (29) into the �rst-order equations and using a compatibility
condition similar to (25) yields an approximative governing equation in terms of B(�),

B�� + �1A∗ +M (A∗) + 2��1(�; 1) = 0; (30)

where the boundary z = 1 − � was relocated asymptotically to z = 1. The unknown term �1(�; 1)
can be obtained, using the fact that � and the pressure have to be continuous across the vortex core
boundary, so that Eq. (30) becomes

B2� = R(A∗)[1− B]− 8�
15
[1− B5=2]; (31)

where

R(A∗) = 2M (A∗)− 4
A∗

∫ A∗

0
M (A′) dA′ and �= (2��)3=2=�2: (32)

Inside the recirculation core the key assumption is that the ow is stagnant to leading order, i.e.
the vorticity is 0(�) in the core. For a nontrivial solution to exist the right-hand side of (31) must
be positive, yielding a bound on � and �, which in turn places an upper bound on the maximum
possible amplitude,

�¡�m =
3
4
R(A∗); �¡

�4=3

2� �2=3m ; (33)

Amax = A∗ + �: (34)

The eigenvalue �1 is given by

�1 =− 1
A2∗

[
2
∫ A∗

0
M (A′) dA′ + �

(
R(A∗)− 8�

15

)]
: (35)

Let us now suppose that the function f(z′) is given by

f(z′) = �1z′ + �2z′2 + �3z′3; (36)

so that Eqs. (27), (32) and (35) yield

M (A) =
9�2
4

�3A3 + 8�
(
�3 +

2
3
�2

)
A2; (37)

R(A∗) =
9�2
4

�3A3∗ +
16�
3

(
�3 +

2
3
�2

)
A2∗; (38)

�1 =−
(
32
9
�2 +

155
24

�3

)
�Amax − 9�

8
�3� +

2
15
(2�)7=2

�2
�5=2; (39)

where �1 is chosen conveniently to remove the linear term in M (A) so that

�1 =−�2 −
(
1− 3

2�2
)
�3: (40)
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Fig. 1. Time evolution of density at depth 2
3h for � = 0:95�max ; � = 0:01; �3 = 1 and �2 =−1:5 (mKdV outer solution).

Introducing �2 =−�1 Eq. (28) becomes

A2X − �2A2 + �1A3 + �2A4 = 0; (41)

where

�1 =
16�
3

(
�3 +

2
3
�2

)
and �2 =

9�2
8

�3: (42)

Let us consider the two cases �3 = 0 or �2 =− 3
2�3, such that �2 = 0 or �1 = 0, in order to remove

the quartic and cubic term in the amplitude equation (41) respectively (Fig. 1).
(i) For �3 = 0 (�2 = 0) Eq. (41) is the familiar steady-state Korteweg–de Vries equation (KdV)

equation, which has the solution

A=
�2

�1
sech2

�
2
(|X | − X∗) : (43)

(ii) For �2 =− 3
2�3 (�1 = 0) Eq. (41) reduces to the steady modi�ed Korteweg–de Vries (mKdV)

equation

A2X − �2A2 + �2A4 = 0; (44)

which has the positive solution

A=
�√
�2
sech � (|X | − X∗) ; (45)

representing a wave of depression (A¿ 0).
The streamfunction �eld � and its �rst derivatives have to be continuous at the vortex core

boundary to ensure the continuity of the normal velocity and pressure there. The condition on X∗
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satisfying this without any approximation is

X∗ = |X0| − 2
�
ln
(
�
√ �

�1
+
√

�2
�
�1

− 1
)

for �2 = 0 (46)

and

X∗ = |X0| − 1
�
ln


�

�√
�2
+

√
�2
�2
�2

− 1

 for �1 = 0: (47)

The phase speed of the solitary waves is determined by the eigenvalue �1 (see Eqs. (16) and
(22)) and is a function of wave amplitude, unlike the linear phase speed, which depends only on
the strati�cation and depth of the uid

c0 =
√

�gh=�:
To leading order the nonlinear phase speed can be written as

c = c0

(
1− �2

2�2 �
1 + O(�4)

)
: (48)

For �2 = 0, corresponding to the KdV outer solution, the eigenvalue �1 given by (39) with �3 = 0 is

�1 =−�1Amax +
2
15
(2�)7=2

�2
�5=2: (49)

If the recirculation region is absent Eq. (43) with X∗ = 0 represents the solution over the entire
domain. The eigenvalue �1 is given by

Amax = �2=�1; (50)

where, since �1 =−�2,

�1KdV =−�1Amax: (51)

Dropping the O(�4) term subsequently, the phase speed of the solution with the recirculating region
can be expressed as

cGD|�2=0 = cKdV − c0
�2
(2�)7=2
15

�5=2; (52)

where

cKdV = c0

(
1 +

�2

2�2 �1Amax
)

; (53)

is the phase speed of the KdV solution without the recirculating region. Note that cKdV increases
with amplitude Amax.
For �1 = 0, the mKdV outer solution, �1 becomes

�1 =−�2
1
�(Amax + �) +

2
15
(2�)7=2

�2
�5=2: (54)

Similarly if the recirculation region is absent Eq. (44) is the amplitude equation for the entire domain
and its eigenvalue �1 can be computed from

Amax = �=
√
�2; (55)
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Fig. 2. Relative phase speed (c− c0)=c0 and eigenvalue �1 for the KdV outer solution (bold) and KdV (dashed) solution
for 1=�6Amax ¡ 1=�+ �max, diamonds denote the numerical results.

yielding

�1mKdV =−�2A2max (56)

for the eigenvalue and

cmKdV = c0

(
1 +

�2

2�2 �2A
2
max

)
(57)

for the phase speed. Note that the phasespeed of the mKdV solution increases with A2max in contrast
to the KdV solution which increases with Amax only. The phase speed of the solution with the
incorporated recirculation region is

cGD|�1=0 = c0

(
1 +

�2

2�2 �2
1
�(Amax + �)− c0

�2
(2�)7=2
15

�5=2
)

: (58)

The relative phase speed

(cGD − c0)=c0

for the two outer solutions considered is plotted in Figs. 2 and 3. The GD solution is of the order
O(10−3) and O(10−2) slower than the phase speed of the KdV and mKdV solution, for the KdV
and mKdV outer solution, respectively. The GD solution is also faster than the speed of the linear
long wave (see Eq. (53)). The width of the initial streamfunction �eld increases with amplitude
(Fig. 4). Note that in the KdV case �1 =−�1=�+O(�), and in the mKdV case �1 =−�2=�2 +O(�).
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Fig. 3. Relative phase speed (c − c0)=c0 and eigenvalue �1 of the DG for the mKdV outer solution (bold) and mKdV
(dashed) solution for 1=�6Amax ¡ 1=�+ �max, diamonds denote the numerical results.

Thus in both cases X∗ − |X0| is O(�1=2), which is required for consistency with the scaling for the
inner region.

4. Numerical results

To test the validity of the preceeding asymptotic theory we consider some numerical simulations
of the unsteady Eqs. (1)–(4). Since solitary waves conserve momentum and energy it is of vital
importance for the numerical scheme to be nondissipative, more precisely that the nonlinear convec-
tive term in the governing equation is represented in conservative form (Zang, 1990). Applying the
Boussinesq approximation to the vector form of the momentum equation yields

ut + (u · ∇)u =− 1
�0

∇p− �g
�0
k: (59)

Taking the curl of Eq. (59) yields an equation for the vorticity �=∇× u,
�t −∇× (u × �) =−�x

�0
gj; (60)

Since the ow is two dimensional, the vorticity vector � has only one component in the y-direction
�= � j and so Eq. (60) reduces to

d�
dt
=−�x

�0
g: (61)

Thus vorticity can only be generated by a nonzero horizontal density gradient.
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Fig. 4. Plot of the width for 0¡�¡�max for the KdV (bold) and mKdV (dashed) outer solution (�2 = 1 and �3 = 1
resp.)

Consider a perturbation to the basic density �eld

�(x; z) = ��(z) + �′(x; z); (62)

then the vorticity equation (60) and density equation (3) become

�t =−∇ · (u�)− �∗
x ; (63)

�∗
t =−∇ · (u�∗) + w ·N 2; (64)

where the Brunt-V�ais�al�a frequency is given by

N 2(z) =−g
1
�0

d ��
dz

(65)
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Fig. 5. Time evolution of density at depth 2
3h for � = 0:95�max ; � = 0:01; �2 = 1 and �3 = 0 (KdV outer solution).

and

�∗ = g�′=�0: (66)

Eqs. (63) and (64) are the equations which are integrated numerically; the nonlinear convective
term is computed in an energy conserving form. The spectral numerical scheme used here has been
successfully employed by Rottman et al. (1996) to study the unsteady ow of an incompressible, in-
viscid Boussinesq ow over topography. It employs Chebyshev collocation in the vertical and Fourier
modes in the horizontal and uses a fourth-order standard Runge–Kutta scheme for timestepping. To
resolve the recirculation region a resolution of 256× 65 is used in the following. A 2=3 �lter on the
highest modes is used to remove aliasing errors and a sponge is situated across the periodic boundary
condition in the horizontal to prevent energy propagated downstream from re-entering the domain.
Time is normalized with twice the halfwidth D = 2(x0 + �x) and the phase speed c. A measure

of the width of the outer region being �x = 2=�� for case (i) and �x = 1=�� for case (ii), these being
the KdV and mKdV cases in the outer region, respectively, while x0 represents the halfwidth of the
inner region where Eq. (30) is valid. The strati�cation parameter � is set to �=0:01 in the following
to satisfy the Boussinesq approximation.
The KdV solution was tested �rst and remained of permanent form, satisfying the �rst three

conservation laws to �rst order.
For the initialization of the streamfunction �eld in the inner region the �rst term of an expansion

in powers of �2 is used to approximate the bounded solution to Eq. (30) near B= 1,

B= 1− k�2; where k = 1
4R(A∗)− 1

3�: (67)

Notice that the bound on � (33) appears as the coe�cient of the �rst term in this expansion. A
standard fourth-order Runge–Kutta solver continues the solution to B= 0, determining the width of
the inner region. Initially the streamfunction is set to a constant, �= �(1), inside the recirculation
region and the discontinuity of �z is smoothed. The initial density �eld is calculated taking advantage
of Eqs. (7) and(9) together with Eq. (14).
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Fig. 6. Density plots for normalized times tn = 0; 69:89; 106:67 and 147.13.

The numerical results for both the KdV and mKdV outer solutions show that the approximate
initial conditions shed transients (Figs. 5, 6 and 9, 10), which propagate downstream only (see also
Fig. 1). Permanent steady solitary waves evolve after the ow has traversed the width of the waves
for more than a hundred times, indicating the steady state of the solutions. In the close-up contours
of the recirculation regions the streamfunction �elds remain homogeneous (Figs. 7 and 11 ), whereas
the density �eld shows density inversions of higher order (i.e. variability of O(10−6)), but remains
homogeneous to �rst order as predicted by DG. As a measure of the strength of the closed streamline
region the maximum horizontal velocity opposing the downstream ow is measured at the top of
the recirculation region. This adverse velocity opposing the ow at the upper boundary is of second
order (Figs. 8 and 12). The adverse velocity of the solution with the KdV outer solution decays to
a level which cannot be resolved numerically. In contrast the adverse velocity of the solution with
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Fig. 7. Plot of density (left) and streamfunction (right) for normalized times tn=0; 69:89; 106:67 and 147.13 inside of the
recirculation region, 41× 23 grid points resolution for � and 61× 23 grid points for  .

the mKdV outer solution approaches a positive value. The results show that the recirculation region
is stagnant to �rst order, as predicted by the asymptotic analysis of Derzho and Grimshaw.
The amplitude of the steady-state solution is measured for a number of di�erent phase speeds from

0:65�max to 0:95�max, denoted by diamonds in Figs. 2 and 3. The results agree with the theoretical
results for the amplitude-phase speed relations to within the error of the computation.
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Fig. 8. Maximum adverse velocity u at the upper boundary.

Fig. 9. Time evolution of density at depth 2
3h for �= 0:95�max ; �= 0:01; �2 =−1:5 and �3 = 1 (mKdV outer solution).

5. Conclusion

The solitary waves in a weakly strati�ed shallow uid studied in this paper proved to be sta-
ble and of permanent shape. The solutions possess the characteristics of large amplitude solitary
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Fig. 10. Density plots for normalized times tn = 0; 70:24; 107:21 and 147.88.

waves. The width increases with amplitude and the phase speed depends nonlinearly on the am-
plitude (� = Amax − A∗). The width of the solutions tends to in�nity for the maximum possi-
ble amplitude (� → �max), indicating the termination of this asymptotic theory. The results show
that solitary waves with an essentially homogeneous vortex core exist in a Boussinesq uid. The
amplitude is in both cases governed by the nonlinear equations (26) and (30) (cf. Derzho and
Grimshaw, 1997).
The recent laboratory experiments by Stamp and Jacka (1995) of solitary waves with vortex cores,

which were generated by displacing a very large mass of uid along a very thin thermocline, generally
support the theoretical and numerical results presented here, but seem to show that considerable
mass is transported with the wave. This was not the case here, instead our results indicate that the
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Fig. 11. Plot of density (left) and streamfunction (right) for normalized times tn = 0; 70:24; 107:21 and 147.88 inside of
the recirculation region, 41× 23 grid points resolution for � and 61× 23 grid points for  .

steady state tends to be a solitary wave with a vortex core carrying only little mass. The numeri-
cal simulation by Terez and Knio (1998) of the gravitational collapse of a mixed region along a
thermocline produced similar solitary waves with vortex cores of diminishing mass, which is in
better agreement with our results.
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Fig. 12. Maximum adverse velocity u at the upper boundary.
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