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[1] Numerical simulations are performed employing two numerical models to contrast
nonlinear bore evolutions predicted by the Benjamin‐Davis‐Ono (BDO) equation
with evolutions described by the Navier‐Stokes (NS) equations. The first model is a simple
one‐dimensional solver of the BDO equation; the second describes the nonlinear
two‐dimensional dynamics of the NS equations. Both utilize the Boussinesq
approximation. Owing to their simpler, horizontally isotropic nature, only isolated thermal
ducts are considered in this study. Simulations assume an initial long‐wave perturbation
and address the influences of perturbation amplitude and wavelength, viscosity, and
nonzero background stability on the resulting evolutions. Results indicate that the BDO
equation provides reasonable predictions of bore character and evolution for conditions that
satisfy its underlying assumptions. BDO predictions fail to describe bore character
and evolution in cases where either the initial perturbations or the thermal environment
differs significantly from BDO assumptions. Predictions employing the NS equations will
thus provide more realistic guidance in the interpretation and understanding of bores
observed in the mesopause region for general environments.
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1. Introduction

[2] For the past decade there has been a continuing effort
to explain mesospheric bore observations. These efforts
began when Dewan and Picard [1998] applied hydraulic
theory to apparent observations of bores in the mesosphere
and lower thermosphere (MLT), providing a qualitative
starting point for understanding these phenomena. Dewan
and Picard [2001] furthered these efforts by examining
potential forcing mechanisms with scales relevant to MLT
bore observations. Subsequent numerical studies performed
by Seyler [2005] and Laughman et al. [2009] demonstrated
the viability of numerical models employing the Navier‐
Stokes (NS) equations to generate bore‐like evolutions from
initial long‐wave perturbations.
[3] The general study of solitons and bores in fluids has a

much longer history, dating back to work done by Airy
[1845], Rayleigh [1908], and Lamb [1932]. The Korteweg–
de Vries (KdV) equation was the first clear and concise
description of the balance between nonlinear steeping and
dispersion which supports the existence of solitons, waves
of permanent form [Korteweg and de Vries, 1895]. While
this theory is an excellent approximation for surface waves,

it is less applicable to fluids with continuous density gra-
dients. Internal solitary waves are better described by the
Benjamin‐Davis‐Ono (BDO) equation and indeed this
equation has provided guidance in studies of tropospheric
bores such as the Morning Glory in Australia [Christie,
1989; Porter and Smyth, 2002].
[4] The goal of this paper is not to engage in an in‐depth

exposition of the KdV equation, the BDO equation, or their
relative similarities and differences, though we will touch on
a few points of each. A wealth of literature already exists
detailing the characteristics of each, including, but not
limited to, work by Ono [1975], Koop and Butler [1981],
Grimshaw [1980], Christie [1989], and others [Hammack
and Segur, 1974], whom we reference in section 2.
[5] Rather, the goal of this work is to address the condi-

tions under which the BDO equation offers a good
approximation to solutions of the NS equations in idealized
environments and to explore the differences that arise when
less idealized environments are considered, specifically a
nonzero background stability and the effects of viscosity. It
should be noted that the BDO equation has been extended to
include viscous effects, compressibility effects, and radia-
tive effects due to more complicated environments than
those first considered by Benjamin [1967] [e.g., Grimshaw,
1980; Maslowe and Redekopp, 1980]. Our comparison
studies make use of only the simple BDO equation and our
study of nonidealized environments is confined to use of our
2‐D NS model.
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[6] We discuss the KdV and BDO equations in section 2.
Section 3 describes the numerical BDO and NS models used
for these studies, including our nondimensionalization.
Section 4 presents and contrasts the results of our BDO
solutions with those of the NS equation for a variety of
initial long‐wavelength scales and amplitudes. Also pre-
sented are results of our NS model assuming finite viscosity
and nonzero background stabilities. A discussion of our
results and our conclusions are provided in section 5.
Appendix A contains additional details about the BDO
theory presented in section 2.2.

2. KdV and BDO Equations

[7] While the focus of this study is the comparison of bore
evolutions predicted by the BDO and NS equations for
varying initial conditions and environments, it is useful to
first discuss the KdV equation. KdV theory is qualitatively
similar to BDO theory and consists of a simpler formulation.

2.1. Korteweg–de Vries Equation

[8] The KdV equation is a finite amplitude “fairly long”
(i.e., weakly dispersive) wave approximation for surface
wave motion in a 2‐D channel flow. The fluid density is
assumed to be constant while the density of the overriding
fluid (typically air) is assumed to be zero. Typical flow
parameters include the undisturbed fluid depth, H, and the
perturbation of the free surface from its undisturbed level,
h(x, t). Because the wavelengths considered are fairly long,
the dispersion relation is not constant and takes the form

c ¼ c0 1� �k2
� �

: ð1Þ

For surface water waves, the long‐wave phase speed is c0 =
(gH)1/2 and b = 1/6 H2 [Benjamin, 1967; Miles, 1981], and
the wave number is k = 2p/l. The dimensional form of the
KdV equation is then [Hammack and Segur, 1974]

@�

@t
þ c0

@�

@x
þ 3

2

c0
H
�
@�

@x
þ 1

6
c0H

2 @
3�

@x3
¼ 0: ð2Þ

The coefficient of the nonlinear term is 3/2 c0/H and the
coefficient of the linear dispersion term is 1/6 c0H

2. The
competing effects of nonlinearity and dispersion are central
to KdV and BDO theory.
[9] The KdV equation has stationary solutions, waves of

permanent form, which represent a balance of dispersive and
nonlinear effects. These solutions include periodic cnoidal
waves (which we do not consider) and solitons of the form

� x; tð Þ ¼ �0 sech
2 x� cbtð Þ

ffiffiffiffiffiffiffiffiffi
3�0
4H3

r( )
; ð3Þ

where the KdV soliton velocity, cb, is greater than the long‐
wave phase speed, c0, and is given by

cb ¼ c0 1þ �0=2Hð Þ: ð4Þ

For the KdV equation, the balance between nonlinear
steepening (proportional to h0/H) and linear dispersion

(proportional to H2/l2 as seen in the dispersion relation) can
be quantified by the parameter al2/H3. Following Lighthill’s
[1978] treatment, if one regards the amplitude of a soliton to
be half its height, a = 1/2h0, and its “wavelength” to be the
range over which the height is greater than some percentage
of its maximum value, say 3%,

� ¼ 2 ArcSech
ffiffiffiffiffiffiffiffiffi
0:03

p� �h i ffiffiffiffiffiffiffiffiffi
4H3

3�0

s
; ð5Þ

then we obtain a value of al2/H3 = 16.14 ∼ 16. It is note-
worthy that for solitons of any geometry this parameter’s
value is independent of H, l, and h0. If one wishes to instead
regard the “wavelength” to be only the square root term in
equation (5) and the amplitude to simply be a = h0 then
al2/H3 = 1.333 ∼ 1, indicating the relatively equal strengths
of dispersive and steepening effects. For the remainder of
this paper we will denote amplitude as h0.
[10] Finally, it should be noted that due to the way it is

derived, any initial perturbation that evolves according to
the KdV equation will propagate preferentially in one
direction, with the nonlinear evolution proceeding one
direction and a possible dispersive component proceeding in
the other in a frame moving with speed c0 [Benjamin, 1967].

2.2. Benjamin‐Davis‐Ono Equation

[11] The development of the BDO equation is qualita-
tively similar to that of the KdV equation. Fairly long waves
of small but finite amplitude are considered and the result is
an equation which contains competing dispersion and non-
linear steepening terms, and which has a soliton solution.
However, whereas the KdV equation was derived for sur-
face waves and evolves the surface displacement h(x, t), the
BDO equation is valid for internal waves present in a deep,
density stratified fluid and evolves the displacement of the
fluid throughout its vertical extent, which we denote h(x, z, t).
Examples of density profiles first considered in the devel-
opment of BDO theory are described by equation (A3) and
depicted in Figure 1 [Benjamin, 1967; Davis and Arcivos,
1967]. Figure 1a shows the density profile applicable to
mesospheric bore modeling, while Figure 1b shows the
profile similar to what we actually model. Under assump-
tions of vertical antisymmetry and the Boussinesq approxi-
mation, the two profiles have the same dynamics. In both,
the length h is defined as the vertical range over which the
density is variable. r1 and r2 are arbitrary constant densities
and the mean density, �0, is equal to the density at z = 0,
again due to antisymmetry.
[12] Associated with each density profile is a corre-

sponding stability profile,

N 2 zð Þ ¼ g

�0

d�0 zð Þ
d z

¼ � g

�0

d�0 zð Þ
d z

; ð6Þ

where N2 is the buoyancy frequency squared, g is acceler-
ation due to gravity, r0(z) is the unperturbed density profile,
�0(z) is the unperturbed potential temperature profile, and �0
and �0 are the mean values of the density and potential
temperature profiles. The equivalence of �0(z) and r0(z)
defined by equation (6), as well as the use of �0 and �0 in
place of �0(z) and r0(z) is valid under the Boussinesq
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approximation where variations of �0(z) and r0(z) about
their mean values are small. It should be noted that meso-
spheric bore dynamics can be on the order of a scale height,
and consequently the results reported in this paper must be
applied to observation with caution. The comparison of the
BDO model with the NS results is unaffected, however, as
both make the Boussinesq approximation. Figure 1c shows
a stability profile which corresponds to the density profile in
Figure 1a, though with the length scale doubled in order to
make use of Figure 1b, vertical antisymmetry about z = 0,
and the Boussinesq approximation for our comparison
studies. Figure 1d displays the modal function, �(z), asso-
ciated with the N2(z) profile in Figure 1c and will be dis-
cussed further below.
[13] The displacement, h(x, z, t), can be separated into two

functions: a horizontally dependent function that evolves in
time and a time‐independent modal function that varies with
the vertical coordinate [Ono, 1975; Christie, 1989],

� x; z; tð Þ ¼ A x; tð Þ 8 zð Þ: ð7Þ

The modal function, 8(z), and the long‐wave phase speed,
c0, both depend on the specific form of N2(z) being con-
sidered (see Appendix A for details). The dispersion relation
for “fairly long” internal waves is

c ¼ c0 1� � kj jð Þ; ð8Þ

where g is a constant that depends on the specific density
profile being considered. This contrasts with the dispersion
relationship for surface waves (equation (1)) and unsur-
prisingly yields an evolution equation with a different dis-
persion term than the KdV equation,

@A

@t
þ c0

@A

@x
þ 	A

@A

@x
þ 


@2

@x2
H Að Þ ¼ 0: ð9Þ

Here, H(A) is the Hilbert transform of A, c0 is the long‐wave
phase speed, and the coefficients of the nonlinear term, a,
and the dispersion term, d, are functions of c0 and 8(z) (see
Appendix A for further details).

[14] Stationary solutions of the BDO equation are solitons.
However, unlike the soliton solutions of the KdV equation,
the solitons of the BDO equation are algebraic in nature,
taking on the form

A x; tð Þ ¼ �0�
2

x� cbtð Þ2 þ �2
: ð10Þ

By inspection, l is the half width at half maximum (HWHM)
of the BDO soliton. The velocity is given by

cb ¼ c0 þ 1

4
�0	 ¼ c0 þ 


�
ð11Þ

and demonstrates the same qualitative relationship between
soliton velocity, soliton height, and soliton width as the KdV
soliton: as the soliton width shrinks its amplitude and velocity
both increase. Also, as with the KdV soliton, the BDO soliton
has a speed greater than the linear long‐wave phase speed c0.
[15] The difference in the dispersion characteristics

between the BDO and KdV equations also implies a dif-
ferent nondimensional parameter governing the relative
strengths of dispersion and nonlinearity; in the case of the
BDO equation the parameter is not h0l

2/H3, where H is the
depth of the fluid, but rather h0l/h

2, where h is the interface
thickness defined above and in Figure 1. To illustrate this
difference consider a sech2 stability profile, N2(z) =
N0
2sech2(z/h), for which the value of h0l/h

2 is found to be
2.5. As with the KdV soliton, this parameter is independent
of h0, h, and l for an arbitrary soliton and is of order ∼1. By
contrast, computing the KdV parameter as h0l

2/h3 for the
BDO soliton results in a function of l/h, which contradicts
the notion that solitons of any geometry represent the
balance between nonlinearity and dispersion. Furthermore,
the KdV value of 1.333 for a soliton would be obtained with
l/h = 0.5333 while the BDO value of 2.5 would require
l/h = 1.0, both of which clearly violate the assumptions
of both theories that l > h.
[16] An important point to consider is that while the

parameter h0l/h
2 is constant for arbitrary geometries of

Figure 1. (a, b) Density profiles considered by the BDO equation. (c) Raised cosine stability profile used
in our models. The dashed lines of Figure 1c mark the FWHMof the cosine duct from −h/2 to h/2. (d)Modal
function for the cosine stability profile computed for z ≥ 0 (solid line) and antisymmetrically reflected to the
region z < 0 (dashed line).
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BDO solitons, it is a function of the density profile. By
inspection of equation (11), h0l = 4d/a, implying that dif-
ferent ducting structures with different values of d and a
support different relative strengths of linear dispersion and
nonlinear steepening behavior.

3. Numerical Models

[17] Two numerical models are employed in this study.
The first is a NS model described in section 3.1; the second
is a BDO model described in section 3.2. Both make use of
the time stepping formulation and FFT routines described in
section 3.1. In order to directly compare the results of each
model, both use the same raised cosine stability profile
depicted in Figure 1c and defined by equation (12), and both
models are nondimensionalized by the full width at half
maximum (FWHM) of h and peak stability N0

2:

N 2 zð Þ ¼ N 2
0

1

2

� �
1þ cos �z=hð Þ½ �; zj j � h

0; zj j > h

8<
: : ð12Þ

The cosine duct has the particular advantage that the rele-
vant length scale for the BDO model, h in Figure 1b, and the
chosen length scale for our NS model, the FWHM, is the
same.

3.1. Navier‐Stokes Solver

[18] Our NS studies employ a numerical code solving the
incompressible Boussinesq Navier‐Stokes equations for
direct numerical simulations (DNS) of bore generation and
morphology assumed to occur in two spatial dimensions.
Previous applications of this code have described 2‐D bore
studies [Laughman et al., 2009] and three‐dimensional
(3‐D) studies of nonlinear dynamics, turbulence transitions,
and turbulence evolutions and statistics for both stratified
shear flow (Kelvin‐Helmholtz) instability, or KHI, and
gravity wave breaking [see Werne and Fritts, 1999, 2001;
Fritts et al., 2003, 2006, 2009a, 2009b]. The code employs a
pseudo‐spectral solver that computes the nonlinear advec-
tion terms in physical space. Linear terms and derivatives
are handled in Fourier space, and transformations between
physical and Fourier space are performed by high‐radix
FFTs. Incompressibility (equation (14c)) is enforced via a
two‐stream function formulation expressed as

~u ¼ ~r� ~y þ ~r� ~r� ~�þ ~U0; ð13Þ

where the stream functions ~y = (0, 0, y(x, y, z)) and ~� =
(0, 0, �(x, y, z)) are defined by the vertical velocity and the
vertical vorticity fields and ~U0 = (U0, V0, 0) is the mean
horizontal velocity [Fritts et al., 2009a]. Potential temper-
ature and the two stream functions are advanced in time with
a third‐order Runge‐Kutta (RK) scheme [Spalart et al.,
1991]. The velocity and vorticity fields are computed from
these quantities after each RK time substep according to
equation (13). The time step is allowed to vary dynamically
according to a Courant‐Friedrichs‐Lewy (CFL) condition
of 0.68.

[19] The equations being solved are the incompress-
ible Navier‐Stokes equations subject to the Boussinesq
approximation:

@t~uþ ~u � ~r
� �

~u ¼ �r2~u� ~r P=�0ð Þ þ �=�oð Þ~g; ð14aÞ

@t�þ ~u � ~r
� �

� ¼ 
r2�; ð14bÞ

~r �~u ¼ 0; ð14cÞ

� ¼ �0 1� 	 �� �0
� �	 


; ð14dÞ

where � − �0 is small. Equation (14) supports waves governed
by the 2‐D dispersion relation,

m2 ¼ N 2

U0 � cð Þ2 �
@2U0=@z2

U0 � cð Þ � k2: ð15Þ

Here u = (U0 + u, V0 + v, w) is the full 3‐D velocity field, P is
the pressure field, r is the density, � is the potential tem-
perature, and g is gravity. For the results presented in this
paper U0 is always 0, as are v and V0. N

2 is the buoyancy
frequency defined by equation (6), k = 2p/lx and m = 2p/lz,
lx and lz are horizontal and vertical wavelengths, and n and

 are kinematic viscosity and thermal diffusivity, and a is
related to the coefficient of thermal expansion and is equal to
1/�0.
[20] The length scale by which we nondimensionalize is

chosen to be the FWHM of our stability duct, and our time
scale is chosen to be 1/N0, where the peak stability is given
by N0 = (∣g∣ab)1/2, where b is the magnitude of the maxi-
mum value of the vertical derivative of the potential tem-
perature profile. These length and time scales define the
velocity scale as u0 = N0h. The Richardson number is then
Ri = N0

2h2/u0
2 = 1. We set n = 
, resulting in a Prandtl

number Pr = 1, and so both the Reynolds and Peclet
numbers are defined as Pe = Re = N0h

2/n. According to
equation (6), which employs the Boussinesq approximation,
potential temperature is proportional to the vertical integral
of the N2 profile and scales according to N0

2h. Units of
temperature are recovered though the constants g and a,
which for environments appropriate to the mesopause have
values of 9.55 ms−2 and 1/(8500 K), respectively. With a
chosen length scale of 5 km and a stability maximum N0 =
0.0523599 s−1, our time scale is ∼19 s and our velocity scale
is ∼262 ms−1. We select a Reynolds number of 13090.0,
corresponding to a kinematic viscosity of 100 m2s−1. For
effectively inviscid runs viscosity is set to the vanishingly
small value of 10−4 m2s−1 resulting in a Reynolds number of
1.309 × 1010; this value was chosen because preliminary
simulations performed with larger Reynolds numbers were
not noticeably different from the 1010 case. For all the
effectively inviscid runs there is a limit on how long the
simulation can run until the growing undamped Gibbs noise
attains an amplitude comparable to the modeled dynamics
[Laughman, 2009].
[21] All NS simulations presented in this paper assumed

2‐D nonlinear dynamics and a domain having periodic
horizontal boundary conditions and reflective upper and
lower boundaries. Unless otherwise noted, all simulations
also employ 1000 spectral modes in the horizontal and 2501
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modes in the vertical. Specific horizontal domain sizes, xmax,
vertical domain sizes, zmax, and numbers of grid points are
given in section 4.
[22] Initializing the NS model consists of defining the

mean environment and the perturbation to that environment.
In every run the mean wind is set to zero while the nondi-
mensional mean potential temperature profile in the region
∣z∣ < 1 is given by equation (16a). Equation (16b) is the
corresponding stability profile:

� zð Þ ¼ N 2
Bzþ

1

2
1� N 2

B

� �
zþ 1

�
sin �zð Þ

� �
; ð16aÞ

N 2 zð Þ ¼ N2
B þ 1

2
1� N 2

B

� �
1þ cos �zð Þ½ �: ð16bÞ

NB
2 is the constant, nondimensional background stability in

the region ∣z∣ > 1 and is set to zero for all comparison runs
with the BDO equation. For the purposes of this paper, the
terms “background” or “background stability” refer to this
region away from the duct with ∣z∣ > 1. We note that our
mean temperature and stability are continuous functions
while the third derivative of temperature is discontinuous at
z = ±1. This reduces the order of our solver to two.
[23] We initialize our NS runs on the basis of the pre-

dictions of the BDO equation for two types of perturbations,
a soliton and a sinusoid. Our initialization is computed ac-
cording to equation (A1) in the inner region and equation
(A9) in the outer region. The vertical velocity is initialized
as the partial time derivative of the fluid displacement. The
temperature perturbation is computed numerically by
applying h(x, z) to the temperature field, mapping T(x, z, t)
to T(x, z + h, t). Specifically, the value of the initial potential
temperature at T(x, z + h(x, z, 0), 0) is set equal to the value
of the undisturbed potential temperature profile, T(z). For
values of h where z + h does not lie directly on a grid point a
linear interpolation between neighboring grid points is used
to compute T(x, z + h, 0). The initial horizontal velocity is
computed numerically from the specified vertical velocity
according to equation (13).
[24] The specific forms of the soliton and soliton‐like

initializations are

� x; zð Þ ¼

S
�0�

2

x2 þ �2
8 zð Þ; zj j < 1

S
�0 �þ z� 1ð Þ2

x2 þ �þ z� 1ð Þ2 env zð Þ; z > 1

�S
�0 �� z� 1ð Þ2

x2 þ �� z� 1ð Þ2 env zð Þ; z < 1

8>>>>>>>><
>>>>>>>>:

; ð17aÞ

w x; zð Þ ¼

S 2cbx
�0�

2

x2 þ �2½ �2 8 zð Þ; zj j < 1

S 2cbx
�0 �þ z� 1ð Þ2

x2 þ �þ z� 1ð Þ2
h i2 env zð Þ; z > 1

�S 2cbx
�0 �� z� 1ð Þ2

x2 þ �� z� 1ð Þ2
h i2 env zð Þ; z < 1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

;

ð17bÞ

env zð Þ ¼ 1

2
tanh zþ zmax

4

� �
� tanh z� zmax

4

� �h i
; ð18Þ

where S modifies the amplitude of the perturbation. S = 1 is
the soliton case while S ≠ 1 defines the soliton‐like cases.
The sine wave initialization is given by

� x; zð Þ ¼

�0 sin
2�

�x
x

� �
8 zð Þ; zj j < 1

�0 sin
2�

�x
x

� �
exp

�2�

�x
jz� 1j


 �
env zð Þ; z > 1

��0 sin
2�

�x
x

� �
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�2�

�x
j�z� 1j
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env zð Þ; z < 1

8>>>>>>><
>>>>>>>:

;

ð19aÞ

w x; zð Þ ¼

�2�

�x
�0c0 cos

2�

�x
x

� �
8 zð Þ; zj j < 1

� 2�

�x
c0�0 cos

2�

�x
x

� �
exp

�2�

�x
jz� 1j


 �
env zð Þ; z > 1

2�

�x
c0�0 cos

2�

�x
x

� �
exp

�2�

�x
j�z� 1j


 �
env zð Þ; z < 1

8>>>>>>>>><
>>>>>>>>>:

:

ð19bÞ

Since there is no relationship between l and h0 for a sine
wave, the variable S serves no purpose here; a value of S
other than 1 is absorbed by the amplitude h0. The purpose of
the envelope function defined by equation (18) is to force
the vertical velocity perturbation to a value of strictly zero
at the upper and lower boundaries. The reason for this is
that the spectral formulation of the code requires a vertical
velocity of zero at these boundaries; failing to do so results
in significant Gibbs oscillation. A number of simulations
were performed to test the effect of this envelope on the
resulting evolution, and the resulting choice of vertical
domain size minimizes these effects without unduly sacri-
ficing efficiency.

3.2. BDO Solver

[25] The numerical model used to solve the BDO equation
is composed of two parts – the first solves the modal
equation for �(z) and c0, and determines the values of a and
d, and the second evolves the nondimensional equation (9).
[26] A fourth‐order Runge‐Kutta integration is used to

solve equations (A5) and (A6) for nondimensional values of
a, d, c0, and the modal function, �(z) from an initial stability
profile, N2(z). For the cosine stability profile these values
are a = 1.03714, d = 0.09318, and c0 = 0.33715, with the
corresponding modal function plotted in Figure 1d.
Equation (A5) is solved in the region z ≥ 0 (denoted by
the solid line) and then reflected antisymmetrically to the
region z < 0 (denoted by the dashed line). The parameter
h0l/h

2 then has a value of 0.3594.
[27] In order to test the accuracy of these values, we

numerically compute values for a, d, and c0 for the sech2

duct and compare them against their analytically obtained
values. The results are presented in Table 1 and demonstrate
very good agreement (within 0.04%), lending confidence to
the values used for the cosine profile. For the sech2 duct we
use 10,000 grid points over a nondimensional vertical
domain from 0 to 100 to allow the stability to asymptote to
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zero. For our cosine duct we use 10,000 grid points over a
vertical range of 0 to 1 since including values of z > 1 where
the cosine stability profile is strictly zero does not change
any of the obtained values.
[28] The horizontal time evolution is handled in the same

manner as in the NS model described in section 3.1. The
only difference is that instead of time evolving three, 3‐D
quantities, w(x, t), �(x, t), and the vertical component of
vorticity, wz(x, t), according to the NS equations, the BDO
model evolves one, 1D quantity, A(x, t), according to the
BDO equation.
[29] Finally, in order to compare these results with those

of our NS model we compute the displacement field
throughout the vertical domain [−1,1]. The Boussinesq
approximation allows us to assume the dynamics predicted
by the BDO equation are vertically antisymmetric about the
center of the duct, z = 0, and so we compute the displace-

ment from equation (7) for z = [0,1] and reflect it about the
center of our domain. With our displacement known we
compute the corresponding perturbation to the temperature
field by mapping T(x, z, t) to T(x, z + h, t) in the region
∣z∣ < 1. Comparisons between the BDO and NS models
consist of comparing the potential temperature fields and
we do not compute the vertical velocity field for the BDO
prediction.

4. Results

[30] Sections 4.1–4.3 present the results of both models
for soliton and sinusoidal initializations with a range of
amplitudes and length scales under inviscid and strictly
neutral background stability conditions. Section 4.1 utilizes
the soliton initialization (equation (16) with S = 1) while
section 4.2 uses a soliton‐like localized forcing (S ≠ 1).
Section 4.3 utilizes an idealized sine wave initialization.
Section 4.4 presents results from the NS model when vis-
cosity is present, and section 4.5 details the effects of non-
zero background stability.
[31] Unless otherwise noted all results are reported in a

reference framemoving rightward with velocity c0. Figures 2,
3, 4, and 6 use markers to track three velocities: the thin
vertical line represents the origin in the moving frame and
has a velocity c0 in the stationary frame. The diamonds

Table 1. Analytically and Numerically Obtained Values of a, d,
and c0 for the Sech2 Stability Profile

Analytic Value Numerical Value Percent Difference

a 0.848528 0.848276 0.0297
d 0.530330 0.530361 0.0057
c0 0.707107 0.706842 0.0375

Figure 2. Time evolution of a l = 4d/ah0 = 25 soliton depicted in a reference frame moving with the
long‐wave phase speed c0 = 0.33715. (top) The horizontally averaged potential temperature predicted by
the NS (solid line) and BDO (dashed line) equations. (bottom) The difference between the NS and BDO
solutions (NS minus BDO). The diamond moves leftward with velocity c0 and represents the origin in the
stationary frame. The square moves leftward with velocity −2c0 and represents the point moving leftward
with the long‐wave phase speed in the stationary frame.

LAUGHMAN ET AL.: BDO/NS BORE COMPARISON PAPER D02120D02120

6 of 20



move leftward with velocity −c0 and represent the origin in
the stationary frame. The squares move leftward with
velocity −2c0 and represent the point in the stationary frame
moving leftward with velocity −c0.

4.1. Soliton Initialization

[32] The soliton initial condition is ideal for comparing the
two models as it is the stationary solution predicted by BDO
theory. The predicted evolution for each model should then
be a strictly horizontal translation of the initial condition.
Cases were run for wavelengths l ranging from 100 to 0.1,
with corresponding amplitudes defined by h0 = 4d/al.
[33] Figure 2 displays the results of the l = 25, h0 =

∼0.014 soliton and is fairly representative of the behavior of
solitons with l ≈ 10 and larger. The horizontal domain size,
xmax, is 2500 with 1000 grid points and the vertical domain
size, zmax, is 50 with 2501 grid points. The first feature to
note is that the bore velocity, given by equation (11), is very
nearly equal to the long‐wave phase speed and appears to be
nearly stationary. The second noteworthy feature in Figure 2
is the close agreement between the NS and BDO models,
with the largest amplitude difference between the two
models at about 2.5% of the initial perturbation amplitude.
This agreement is highlighted by the inability to distinguish
the solid line of Figure 2 from the dashed line representing
the BDO solution.

[34] The dispersive wave train that develops at x ∼ 1250
propagates leftward at the long‐wave phase speed (tracking
the squares) with an amplitude of about 1% that of the initial
perturbation and represents dispersive effects not predicted
by the BDO equation. This dispersive wave train owes its
existence to the fact that an arbitrary forcing has the potential
to excite a variety of different dynamical responses; the
soliton forcing is “arbitrary” in the following two ways. The
first is that the BDO equation is an approximation, and while
its validity is better for the length scales it assumes, it is never
a completely accurate representation of the physics being
modeled. Because of this, while the soliton is an exact
solution of the BDO equation, it cannot also be an exact
solution of the NS equations. The emergent dispersive wave
then represents motions that the BDO code fails to predict,
and that the NS code describes fully.
[35] The second effect potentially contributing to this

wave is the potential mismatch between the initial temper-
ature and vertical velocity perturbations. The BDO equation
is initialized with one quantity, displacement. The NS
model, however, requires two fields. Extensive testing not
presented here has shown that changing the relative mag-
nitudes of the temperature and velocity perturbations can
lead to significant departures from the BDO prediction, with
the most striking example being the case of an initial tem-
perature perturbation with no velocity perturbation. In this
case the resulting motion was symmetric long‐wave dis-

Figure 3. Time evolution of a l = 5 soliton depicted in a reference frame moving with the long‐wave
phase speed c0 = 0.33715. (top) The horizontally averaged potential temperature predicted by the NS
(solid line) and BDO (dashed line) equations. (bottom) The difference between the NS and BDO solutions
(NS minus BDO).
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turbances propagating outward from the origin with velocity
±c0, qualitatively similar to the motion accompanying
dropping a stone into a pond. No choice of relative ampli-
tudes completely eliminated the dispersive wave, lending
support to the first notion that this wave represents, in part at
least, the limitations of the BDO equation.
[36] The final effect worth noting is the very small

amplitude leftward traveling wave present at x = 770, t = 136.
This small‐amplitude perturbation travels with a velocity of
10c0 and is the result of the impermeable upper and lower
boundaries. This simulation was run with vertical domain
sizes of 16, 25, 33.3, 50, 66.67, and 100 and while the
soliton and dispersive wave evolution remained unchanged,
the velocity of this small‐scale feature changed according to
Vfeature = √2 c0 (zmax)

1/2 ∼ 0.47 (zmax)
1/2, behavior which is

qualitatively similar to that of long waves in shallow water
theory. In addition to the BDO equation, Benjamin’s [1967]
paper also includes a discussion of a system of two immis-
cible fluids of different densities and depths bounded above
and below by impermeable vertical boundaries. That analysis
provides the long‐wave phase speed of waves propagating
along the interface between the two fluids, and in our
notation with the interface vertically located in the middle
of the domain the long‐wave phase speed is c0,interface =
0.5 (zmax)

1/2, which is within 6% of our model’s values. This
6% discrepancy is likely due to the fact that Benjamin’s
analysis assumed the interface to be a sharp density dis-
continuity while our model was run with a region of
smoothly varying density (the duct). Furthermore, while the
soliton evolution is vertically antisymmetric about the center
of the duct, this long‐wave feature is not, which supports the

interpretation that it is analogous to a surface wave propa-
gating on the interface. This wave is a physical response to
unphysical boundary conditions and in light of its small
amplitude and apparent lack of influence on the main
dynamics considered, we neglect its contribution from this
point forward.
[37] For wavelengths smaller than 10, the two models

begin to diverge more significantly. Results for l = 5 are
depicted in Figure 3. The horizontal domain size is 300 with
3000 grid points and the vertical domain size is 50 with
2501 grid points. The increasingly narrower width of the
initial perturbation further violates the assumptions of the
BDO equation and the resulting evolution bears this out.
The most noteworthy feature in Figure 3 is the dispersive
wave train that forms at the origin and propagates leftward
with velocity ∼c0. The amplitude of this response is ∼3% of
the initial perturbation, significantly larger than the disper-
sive wave of Figure 2. The growing strength of this dis-
persive component owes its existence to the fact that the
BDO soliton is becoming a less accurate approximation for
a steady solution of the NS equations for this short length
scale (if, indeed, a truly steady solution to the NS equations
exists at these scales). Consequently, the initial perturbation
excites both a soliton like response and a stronger dispersive
wave response.
[38] In addition to the growing strength of the dispersive

wave, the two predicted evolutions of the BDO soliton begin
to differ at this length scale. The NS‐evolved soliton clearly
lags the BDO prediction. It is no longer meaningful to
discuss the amplitude difference between the NS and BDO
solitons; they now propagate with different velocities and

Figure 4. Time evolution of a l = 10, S = 0.2 perturbation shown in a reference frame moving with the
long‐wave phase speed c0 = 0.33715. Displayed are the horizontally averaged potential temperatures pre-
dicted by the NS (solid line) and BDO (dashed line) equations.
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the leading peak of the difference plot merely highlights
this.
[39] The l = 1 and l = 0.5 cases (not shown) represent

the lowest values of l for which the BDO model even
qualitatively captures the behavior predicted by the BDO
equation. The strength of the dispersive waves continues to
grow in amplitude and the predicted soliton geometries and
velocities disagree even more strongly for these wave-
lengths. It is nevertheless remarkable that the qualitative
behavior exhibited by the NS solution, namely, the emer-
gence of a soliton‐like peak, is similar to that predicted by
the BDO equation. It is especially remarkable that this
qualitative behavior occurs for values of l ≤ h when the
BDO equation is derived assuming l � h. At the smallest
value evaluated, l = 0.1, h0 = ∼3.5, the two models diverge
wildly. The NS model predicts turbulent breaking while the
BDO model, which is a weakly nonlinear theory unable to
model such nonlinear features as recirculation regions or
breaking, continues to predict horizontal translation of the
initial condition. Also, as energy more readily accumulates
at smaller scales in the absence of viscosity numerical noise
begins to dominate the solution. The addition of viscosity

suppresses these small‐scale motions, but also removes
energy from the dynamics we wish to evaluate more
quantitatively.

4.2. Soliton‐Like Initialization

[40] In this section we compare results obtained with the
BDO and NS codes for a soliton‐like initialization, where
the value of S in equation (16) is different from 1. Again, a
number of simulations were performed from which we
present a few representative cases.
[41] The first case we consider is that of a reduced

amplitude displayed in Figure 4, with l = 10 and S = 0.2,
which is representative of all cases with S < 1.0, where both
the NS and BDO solutions agree fairly well. The horizontal
domain size is 1000 with 1000 grid points and the vertical
domain size is 50 with 5001 grid points. There are two
features to consider. The first is the leading peak, which
according to both models has a velocity less than the long‐
wave phase speed. This result is to be expected, as the
velocity of a soliton is proportional to its amplitude and
since the soliton represents the balance between amplitude‐
dependent nonlinear effects and linear dispersion it follows
that reducing the amplitude allows linear dispersion to
dominate the perturbation’s evolution. The dispersive
character is also reflected in the shallow leading edge and
the steepened trailing edge of the initial perturbation. The
difference in amplitudes predicted by the two models for the
S = 0.2 case is ∼1 × 10−4, roughly 2.5% of the peak
amplitude of 0.004. For the S = 0.5 case, the peak amplitude
difference is ∼2 × 10−4, roughly 2% of the peak amplitude of
0.01. The initial dispersive wave with velocity −c0 from
section 4.1 is present as well with an amplitude of ∼1% the
initial peak amplitude.
[42] The second feature we consider is the dispersive

wave train trailing the leading peak. The dispersive waves
that were seen to develop in Figures 2 and 3 were due to the
growing effects of linear dispersion in the NS model due to
shorter horizontal length scales of the initial perturbation,
which violated the approximations of the BDO theory.
Those dispersive waves were not predicted by the BDO
equation. The dispersive tail forming in Figure 4, however,
is the direct result of an initial perturbation with a decreased
amplitude that favors dispersive effects over nonlinear
effects, thus both the BDO and NS models predict this
dispersion. Finally, we note that dispersive effects increase
with decreasing values of S (not shown).
[43] Figure 5 displays the results for values of S > 1.

Figure 5a displays the results of a l = 25, S = 10 initial
condition, Figure 5b shows the evolution of a l = 25, S = 5
initial condition, and Figure 5c shows a l = 10, S = 5
soliton‐like perturbation. For the l = 25 cases, the horizontal
domain size is 2500 with 1000 grid points and the vertical
domain size is 50 with 2501 grid points. For the l = 10 case
the horizontal domain size is 1000 with 1000 grid points and
the vertical domain size is 50 with 5001 grid points. All are
plotted with the same horizontal and vertical scale, with the
nondimensional times of each trace listed above. These three
cases can be contrasted with one another and reveal three
trends. The first is that while none of the three cases display
good agreement between the NS and BDO predictions,
agreement between the two theories is best for smaller

Figure 5. Time evolution of three soliton‐like initial condi-
tions defined by equation (16). Nondimensional times are
listed above each trace. (a) The results of a l = 25, S = 10
perturbation. (b) The results of a l = 25, S = 5 perturbation.
(c) The results of a l = 10, S = 5 perturbation. Displayed are
the horizontally averaged potential temperatures predicted
by the NS (solid line) and BDO (dashed line) equations.
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amplitudes, with the l = 25, S = 5 case displaying better
agreement than the other two.
[44] The second feature to note is that the time required

for independent peaks to emerge from the initial condition is
inversely dependent on amplitude, with the l = 25, S = 5
case requiring almost three times as long as the l = 25,
S = 10 case to begin to develop independent peaks (T = 816
of Figure 5b compared to T = 272 of Figure 5a).
[45] The final noteworthy behavior is the dependence of

this crest creation time on the wavelength. The l = 10, S = 5
case develops peaks at about T = 102, which is a factor of
8 smaller than the crest creation time of the l = 25, S = 5
case of T = 816. While this behavior may owe its existence
more to the differences in amplitude between the l = 10 and
l = 25 solitons than it does to the difference in width, it is
worth recognizing that neither the l = 25, S = 1 soliton nor
the l = 10, S = 1 soliton experiences crest separation, so
interpreting the difference in width as resulting in a differ-
ence in separation time scale for the same pre–factor S = 5 is
reasonable.

4.3. Sinusoidal Initialization

4.3.1. Large‐Amplitude Sinusoid
[46] In this section we compare the responses predicted by

the BDO and NS codes to initial sinusoidal perturbations
described by equation (17), focusing on effects due to
varying perturbation wavelengths and amplitudes. We begin
by presenting the results of each model for a fairly large
amplitude perturbation. Figure 6 shows the results of the
h0 = 0.5, l = 50 case. The horizontal domain size is 50 with
1000 grid points and the vertical domain size is 100 with
2501 grid points. The results shown in Figure 6 are qualita-

tively similar to the other three cases run with h0 = 0.5,
namely those with l = 20, 100, and 200.
[47] There are three noteworthy features in Figure 6. The

first is that the 2‐D NS result is quantitatively unreliable
because the nonlinear response is very strong, rapidly cas-
cades energy to small scales, and would also excite 3‐D
turbulent motions accompanying overturning if allowed to
do so. Our assumption of nearly inviscid motions exacer-
bates of the numerical noise that arises at smaller scales. A
second noteworthy feature is that, despite the problems
present in the NS results, it nevertheless predicts nonlinear
breaking for this large‐amplitude wave. A third noteworthy
feature highlights the limits of BDO equation applicability
alluded to in section 4.1 and is the reason for discussing
Figure 6. The BDO equation is a weakly nonlinear theory
which predicts crest creation to account for all nonlinear
effects. When initialized with a perturbation that leads to
overturning and breaking behavior in the NS solution, the
BDO response is simply crest creation. This underscores the
inherent limits of the BDO equation for large initial per-
turbation amplitudes.
4.3.2. Wavelength Variations
[48] Reducing the amplitude of the perturbation removes

the strongly nonlinear tendencies from the response, such as
closed circulations and breaking. Figure 7 displays the
results of a l = 100, h0 = 0.1 perturbation (Figure 7a) and a
l = 200, h0 = 0.1 perturbation (Figure 7b) plotted on the
same horizontal scale. For l = 100 the horizontal domain
size is 100 with 1000 grid points, while for l = 200 the
horizontal domain size is 200 with 1000 grid points. Both
have a vertical domain size of 100 with 2501 grid points.

Figure 6. Time evolution of a l = 50, h0 = 0.5 sinusoidal perturbation. The solid line is the NS solution,
and the dashed line is the BDO solution.
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Other wavelength considered with h0 = 0.1 include 50, 20,
and 2.
[49] Figure 7 highlights five characteristics of the sinu-

soidal initialization. The first and most obvious is that both
the NS and BDO solutions predict a series of amplitude‐
ordered crests, with the larger amplitude peaks leading the
smaller. The second is that the NS and BDO results agree
fairly well up to the point of crest creation, with both codes
predicting roughly the same time for the initial crest emer-
gence. A third characteristic highlighted by Figure 7 is that
the time scale over which crests begin to emerge is depen-
dent on the initial perturbation wavelength. Figure 7a shows
a peak beginning to emerge at T = 181, while Figure 7b
predicts a peak emergence at time T = 363, twice as long
as the l = 100 case. This supports the interpretation in
section 4.2 that the length scale plays a role determining the
time scale over which individual peaks emerge.
[50] A fourth characteristic of the sinusoidal initialization

is the relative independence of the emerging crests’ geom-
etries on the wavelength. For all perturbation wavelengths,
the leading peak develops with a FWHM of ∼2.5 and an
amplitude of ∼0.25. This also explains why traces at T = 363
and 453 of Figure 7b appear to be similar to traces at T =
181 and 272 of Figure 7a; once the peaks emerge, their

dynamics are governed by their amplitudes and are no
longer dependent on the initial perturbation.
[51] The final noteworthy feature of Figure 7 is that the

BDO solution noticeably leads the NS prediction. One
plausible explanation for this behavior is that since the BDO
equation is an approximation that handles nonlinearity
solely through crest creation, as in Figure 6, there are
additional processes being modeled by the NS equations
that may delay the onset of crest creation which the BDO
equation fails to capture. Another plausible explanation is
that the initial perturbation in the NS model is exciting a
dispersive response in addition to the nonlinear response and
that this leads to more slowly developing crests. While the
exact reasons for this behavior are unknown, this result is
consistent with the results presented in Figures 2, 3, and 5.
4.3.3. Amplitude Variations
[52] Again, simulations were run with numerous combi-

nations of l and h0. Figure 8 presents the results of a l =
200 wave with, h0 = 0.1, 0.06, 0.03, and 0.01. The hori-
zontal domain size is 200 with 1000 grid points and the
vertical domain size is 100 with 2501 grid points. Note that
the horizontal scale plotted in Figure 8 is twice as large as
that in Figure 7, and the vertical scale of Figure 8d is 1/10th
that of Figures 8a–8c.
[53] There are a few noteworthy features highlighted in

Figure 8. The first is that as the amplitude of the initial
perturbation decreases, the agreement between the NS and
BDO results improves. A second is that as the amplitude of
the initial perturbation decreases the emergence time of the
initial crest increases in a very consistent manner: reducing
the initial amplitude by a factor of 0.6 increases the emer-
gence time by a factor of ∼1/0.6( = 1.667), reducing the
initial amplitude by a factor of 0.3 increases the emergence
time by a factor of ∼1/0.3( = 3.333), and reducing the initial
amplitude by a factor of 10 increases the emergence time by
a factor of ∼8.5, though with the large time scales involved
in Figure 8d it becomes more difficult to define the “crest
creation” time. A third noteworthy feature seen in Figure 8
is that the geometry of the emerging peaks is strongly
dependent on the perturbation amplitude. Unlike Figure 7,
where the emergent peaks are relatively similar, there is a
noticeable trend for smaller and broader peaks to emerge as
the initial perturbation amplitude is decreased.
[54] Finally, the apparent sub‐c0 velocity of the leading

peak of Figure 8d needs to be addressed. This behavior, with
the leading emergent peak lagging the long‐wave phase
speed, was observed in a number of runs where the leading
emergent peak had a width comparable to the initial per-
turbation wavelength. It is possible, though unconfirmed at
the moment, that this behavior is due to the periodicity of
the forcing. The horizontal domain is periodic, and so the
evolution depicted in Figure 8 is really the evolution of a
segment of an infinitely long wave train. It is reasonable to
expect that the tail of the evolution, which is long relative to
the horizontal domain, will wrap around and interact with
the leading peak, and that the sum of these two effects is a
peak which travels with velocity less than the long‐wave
phase speed. That both the NS and BDO models predict this
behavior supports this notion, as does the fact that this
behavior was seen for a variety of amplitudes and wave-
lengths when the emergent peak was of comparable width
to the horizontal domain. Fully testing this would require

Figure 7. (a) Time evolution of a l = 100, h0 = 0.1 sinu-
soidal perturbation. (b) Time evolution of a l = 200, h0 =
0.1 sinusoidal perturbation. The solid line is the NS solution,
and the dashed line is the BDO solution. Both horizontal
and amplitude scales are the same.
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initializing the model with an isolated sine wave, though the
observed behavior might be expected for a real sine wave
initialization allowing nonlinear evolutions at successive
crests.

4.4. Viscous Effects

[55] We considered the effects of viscosity for a variety of
length scales and amplitudes for both sinusoidal and soliton‐
like initial conditions. The results were fairly uniform in the
sense that every simulation exhibited the same general
effects. Unsurprisingly, the addition of viscosity acted to
remove energy from the response, as in Figure 9, which
displays the results of a l = 200, h0 = 0.1 sine wave in the
presence of zero viscosity (dashed line) and nonzero vis-
cosity (solid line). The horizontal domain size is 200 with
1000 grid points and the vertical domain size is 100 with
2501 grid points. The addition of viscosity did have an
unexpected effect on the resulting dynamics. While the
amplitude of the leading crest in Figure 9 is smaller than in
the inviscid case, it nevertheless leads the inviscid crest. The
role viscosity plays in causing the peak to lead the inviscid
case is not yet understood, though examining the dispersion
relation with viscous terms retained may explain this
behavior.
[56] A practical implication of the role of viscosity is that

it acts as a filter on those initial conditions that will initiate
observable bores. As seen in section 4.3, increasing the

perturbation wavelength and decreasing the amplitude both
act to increase the time over which crest creation occurs. As
that time increases, viscous effects become increasingly
important in determining whether a bore will develop or
whether energy dissipation will prevent bore formation.

4.5. Nonzero Background Stability

[57] In this final section we examine the effects of nonzero
stability surrounding the thermal duct. In an effort to more
closely model the real atmosphere, we retain the addition of
viscosity from section 4.4. Additional runs with zero vis-
cosity (not presented here) demonstrate similar qualitative
responses to the results discussed in this section. A stable
atmosphere allows for vertical wave propagation and we
expect that increasing the background stability will allow
initial perturbation energy to leak away from the duct,
potentially decreasing or preventing crest creation and bore
formation. A number of simulations were performed with
NB
2 = 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and

0.0001. Figure 10 displays the results of a l = 100, h0 = 0.1
wave for NB

2 = 0.01 (Figure 10a) and NB
2 = 0.1 (Figure 10b).

The horizontal domain size is 100 with 1000 grid points and
the vertical domain size is 100 with 2501 grid points. The
dashed lines are the strictly neutral stability case, NB

2 = 0.0.
[58] The general trend is that increasing background sta-

bility decreases peak amplitudes, with the NB
2 = 0.01 case

being the smallest for which emergent peaks grew and

Figure 8. Time evolution of a l = 200 perturbation with amplitude (a) h0 = 0.1, (b) h0 = 0.06,
(c) h0 = 0.03, and (d) h0 = 0.01. Note that the scale of Figure 8d is a factor of 10 smaller than that of
Figures 8a–8c. The solid line is the NS solution, and the dashed line is the BDO solution.
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subsequently decreased in amplitude. As the background
stability increases further, the perturbation at the thermal
duct decreases to the point at which there is not sufficient
energy to drive nonlinear crest creation. This result is shown
both in Figure 10b, with NB

2 = 0.1 and in Figure 11, which is
a stationary‐frame, partial‐domain, false color image (blue
is cold, red is hot) of the potential temperature perturbation.
The radiation of energy away from the duct is clear from the
tilted bands in Figure 11.
[59] The effect of nonzero stability on bore formation was

also examined by Laughman et al. [2009]. There it was
hypothesized that the inhibiting effect of energy radiating
away from the duct could be countered by increasing the
initial perturbation amplitude, providing a sufficient ampli-
tude over the necessary time scale to allow crest creation.
This concept is revisited here, with results presented in
Figures 12 and 13. Here the amplitude of the wave in
Figure 10b is increase by a factor of three. Both the line plot
of Figure 12 and the full‐field false color image of Figure 13
demonstrate that the hypothesis of Laughman et al. [2009] is
correct.
[60] The line plot displays a number of noteworthy

features of the h0 = 0.3 case (Figure 12, solid line), especially
when contrasted with the h0 = 0.1 case (dashed line) of
Figure 11. The first is that the increased amplitude does
indeed allow crest creation. Additionally, the peaks occur-
ring for h0 = 0.3 are narrower than previous, smaller ampli-
tude, cases (i.e., Figures 7 and 8), confirming the result of
section 4.3 that peak geometry is dependent on the pertur-
bation amplitude. Finally, the amplitudes of the leading
peaks decay rapidly, an effect that is partially due to viscous
dissipation and possibly due to other dynamic effects such
as dispersion.

[61] Figure 13 is a stationary‐frame, partial‐domain, false
color image of the potential temperature field and provides a
more complete picture of the resulting dynamics presented
in Figure 12. The nonlinear response centered at the duct
remains significantly stronger than the radiative response
throughout the vertical domain. Furthermore, as early as
T = 91 (Figure 13b) the individual peaks form and are seen
to modify the long‐wave radiation field of Figure 11. As the
horizontal scale of the response at the duct decreases, k
increases which, for constant N2, results in a smaller m and
larger lz. The crests arising in Figure 13 are sufficiently
narrow that the m2 computed by equation (15) in the region
above and below the duct is negative, resulting in an eva-
nescent response in that region. The effect of this evanescent
perturbation is seen in the modulation of the long‐wave
radiation beginning at time T = 91 and is clearest at time
T = 453. The question of whether or not a bore can form in
the presence of a given background stability may then
simply be whether or not the initial perturbation has suffi-
cient amplitude to create crests that are sufficiently narrow
as to have a negative m2 in the region away from the duct
and be trapped, though this remains to be examined further.
[62] There is one final concern to address for the case of

NB
2 ≠ 0.0. The vertical boundaries are impermeable, and will

necessarily reflect energy back into the domain, potentially
leading to unphysical results. This was not an issue in
sections 4.1–4.4, where the only effect of these boundaries
was the vanishingly small amplitude, fast linear wave
response. Here, however, the background stability allows for
a significant portion of the initial wave energy to propagate
to the boundaries and reflect back to the ducting region.
Similar behavior was previously examined and seen to
lead to unphysical dynamics [see Laughman et al., 2009].

Figure 9. Time evolution of a l = 200, h0 = 0.1 sinusoidal perturbation in the presence of viscosity. The
solid line is the NS solution, and the dashed line is the NS solution in the absence of viscosity.
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Concern that the structure of the response seen in Figures 12
and 13 might somehow be an artifact of this reflection led to
the NB

2 = 0.1, h0 = 0.3, l = 100 simulation being rerun in a
vertical domain that was 8 times larger. The results of that
simulation are qualitatively identical to those presented here;
the number of peaks, as well as the general shape of the
evolution, is the same while actual peak amplitudes vary by
as much as 14%. While these results confirm the qualitative
validity of the NS model for these environments they also
demonstrate that caution must be used in the quantitative
application of this model to observation.

5. Summary and Conclusions

[63] We have employed two codes solving the Boussinesq
Benjamin‐Davis‐Ono (BDO) equation and the 2‐D
Boussinesq Navier‐Stokes (NS) equations to describe
responses to various initial perturbations to an idealized
thermal duct at MLT altitudes. Initial perturbations having
soliton and sinusoidal forms with varying scales and
amplitudes were considered. Also examined were the in-
fluences of viscosity and nonzero stability away from the
thermal duct. Initial conditions and environments for which
the assumptions of the BDO theory are valid yield very good
agreement between the BDO and NS solutions extending to
late times. However, initial conditions and environments

that violate BDO assumptions to varying degrees lead (as
might be expected) to departures of the two solutions in
form and with time, with the larger disparities occurring
for the more significant violations of BDO assumptions.
Viscosity and nonzero stability away from the thermal duct,
which are not considered in the simple BDO theory, were
likewise found to lead to significant departures of the NS
solutions from predictions of BDO theory. Specific differ-
ences between the BDO and NS solutions for the various
cases considered, summarized below, suggest that applica-
tions of BDO theory in interpretations of MLT bore obser-
vations may cause errant inferences of bore dynamics and
environments, even for relatively simple cases in which only
thermal ducting needs to be considered.
[64] For idealized environments, that is, those having zero

background stability away from the thermal duct and no
viscous dissipation, as well as large spatial scales and weakly
nonlinear forcing, BDO solutions are found to closely
approximate the NS solutions, even when dispersive effects
dominate nonlinear effects. Initial solitons having smaller
spatial scales, however, are found to cause increasing
departures of NS solutions from BDO predictions. As the
initial soliton length scale, l = 4d/ah0, decreases, the NS
solution exhibits a smaller amplitude than the BDO solution,
a slower phase speed (but still exceeding the maximum
linear phase speed, c0), and a dispersive trailing wave train.
[65] Initial soliton‐like perturbations (having a soliton

shape, but smaller amplitudes than required to balance dis-
persive and nonlinear effects) yield BDO and NS solutions
that remain in close agreement, even for relatively small
wavelengths, because the weakly nonlinear assumption of
the BDO theory is valid. However, initial perturbations
having a soliton shape, but larger amplitudes, yield BDO
and NS solutions that differ dramatically because the weakly
nonlinear assumption of BDO theory is strongly violated. In
these cases, the BDO solutions exhibit higher phase speeds
and much more rapid crest creation than is seen in the NS
solutions.
[66] We also explored the evolutions of bore responses to

initial long‐wavelength sinusoidal perturbations in the
BDO and NS solutions, given the evidence for such sources
in mesospheric bore observations. In these cases, the two
solutions agree well where the BDO weakly nonlinear
(small‐amplitude) assumption is satisfied. As the initial
sinusoidal amplitude increases, however, departures of the
BDO response from the NS response become more pro-
nounced, with comparable crest spacing in the two solu-
tions, but with higher phase speeds and somewhat faster
crest creation occurring in the BDO solutions.
[67] Figure 14 summarizes the observed relationship

between crest creation time scale with both amplitude and
wavelength for the sinusoidal perturbation. General ten-
dencies seen to occur for both soliton‐like and sinusoidal
initial perturbations in the BDO and NS solutions can be
summarized as follows: (1) The crest creation time scale is
proportional to the length scale of the perturbation. (2) The
crest creation time scale is inversely proportional to per-
turbation amplitude. (3) The geometry of the emergent
crests is dependent on the perturbation amplitude. (4) The
geometry of the emergent crests is independent of the per-
turbation wavelength. (5) Agreement between the BDO and
NS solutions is better for smaller amplitudes and larger

Figure 10. Evolution of a l = 100, h0 = 0.1 sine wave per-
turbation in the presence of a nonzero background stability
(solid line) and in the presence of a strictly neutral back-
ground (dashed line). (a) The background stability is NB

2 =
0.01. (b) The background stability is NB

2 = 0.1.
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length scales. (6) Departures of BDO predictions from NS
solutions are most pronounced for strongly nonlinear
responses. (7) Both BDO predictions and 2‐D NS solutions
fail to describe bore responses when nonlinearity is suffi-
ciently strong to induce recirculation, overturning, instability,
and 3‐D turbulence.
[68] Comparisons of NS solutions obtained with negligi-

ble and nonnegligible viscosity indicate that rapid viscous
dissipation suppresses crest creation and causes the leading
peak to advance beyond that of the inviscid case, suggesting
that molecular and turbulent dissipation may impact bore
evolutions and their interpretations for scales and altitudes at
which these effects are nonnegligible. Background stratifi-
cation that enables an initial sinusoidal perturbation to
propagate away from the thermal duct results in rapid
depletion of perturbation energy at the thermal duct and
weak or no nonlinear steepening and crest creation. Weaker
background stratification does not suppress steepening and
crest creation entirely, but it does weaken the crests that do
arise. Stronger forcing can offset these tendencies to some
extent, but nonlinear steepening and crest creation exhibit a

qualitatively different evolution with background stratifica-
tion than predicted for the same initial perturbation in the
absence of background stratification. For large initial per-
turbation amplitudes, crests may evolve more rapidly with
than without background stratification, but they also exhibit
smaller crest separations, leading‐crest amplitude decay, and
bore responses extending to higher and lower altitudes not
seen to occur for zero background stratification. We note
that similar insights may be drawn from work that extends
the scope of the BDO equation to include similar viscous
and radiative effects, but that we are not in a position to
comment on those extensions since we have not incorpo-
rated them into our current BDO model.
[69] To relate our results to bore observations at MLT

altitudes, we note that a length scale of 5 km implies a l =
100 perturbation that corresponds to an initial perturbation
wavelength of 500 km. Our time scale of ∼19 s implies initial
crest formation after ∼1 h and a series of ∼3–5 amplitude‐
ordered crests over the next 2 h. The separations between
crests are variable, with a largest separation of ∼70 km, a
minimum separation of ∼37 km, and crest FWHM of

Figure 11. (a–f) Evolution of a l = 100, h0 = 0.1 sine wave perturbation in the presence of a nonzero
background stability NB

2 = 0.1. Displayed is the false‐colored perturbation potential temperature field at
six different times. Blue represents colder, denser fluid, while red represents warmer, less dense fluid.
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Figure 12. Evolution of a l = 100, h0 = 0.3 sine wave perturbation (solid line) and a l = 100, h0 = 0.1
sine wave perturbation (dashed line) in the presence of a nonzero background stability NB

2 = 0.1.
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Figure 13. (a–f) Evolution of a l = 100, h0 = 0.3 sine wave perturbation in the presence of a nonzero
background stability NB

2 = 0.1. Displayed is the false‐colored perturbation potential temperature field at
six different times. Blue represents colder, denser fluid, while red represents warmer, less dense fluid.
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∼20 km. The corresponding long‐wave phase speed is
∼88 ms−1 and the bore phase speed is ∼90–95 ms−1. A longer
initial wavelength (∼1000 km) and a smaller initial amplitude
(by ∼2) results in crest creation after ∼3 h, ∼3–5 crests over the
next ∼2 h, and crest FWHM of ∼25 km. While a duct FWHM
of 5 km is on the order of a scale height, these values obtained
with the Boussinesq approximation nevertheless compare
favorably to observed bores [Medeiros et al., 2001; Batista
et al., 2002; Chung et al., 2003; Smith et al., 2003, 2005;
She et al., 2004; Fechine et al., 2005, 2009; Shiokawa et al.,
2006; Snively and Pasko, 2005; Taylor et al., 1995], though
specific bore parameters will depend on the environmental
parameters relevant to each observation.
[70] We anticipate that future efforts will address a further

quantification of the relationships between environmental
parameters and initial conditions and the bore characteristics
that arise, including the roles of background stratification
and horizontal winds. The initial examination of bores
arising owing to Doppler ducting by Laughman et al. [2009]
demonstrated that these should also be important in the
MLT, where much of the small‐scale structure in the vertical
also has large horizontal scales owing to the dominance of
the motion spectrum in many cases by inertia‐gravity wave
motions. Such future work will make continued use of the
BDO equation, both for the comparison it offers the NS
predictions as well as the simplified insights it offers to the
dynamics.

Appendix A: BDO Details

[71] This appendix contains additional details regarding
the BDO equation, including formulae for computing a, d,

c0, and �(z). Recall that h(x, z, t) can be decomposed into
two functions,

� x; z; tð Þ ¼ A x; tð Þ 8 zð Þ: ðA1Þ

The modal function, �(z), and the long‐wave phase speed,
c0, are the solutions of the non‐Boussinesq modal equation
[Ono, 1975],

d

dz
�0 zð Þ d8 zð Þ

dz


 �
� g

c20

d�0 zð Þ
dz

8 zð Þ ¼ 0; ðA2Þ

where g is acceleration due to gravity and r0(z) is the
unperturbed density profile. The unperturbed density is
defined as

�0 zð Þ ¼ �0 ¼ constð Þ; zj j > h
�0 zð Þ; zj j � h



: ðA3Þ

Using the definition for the buoyancy frequency,

N2 zð Þ ¼ � g

�0 zð Þ
d�0 zð Þ
dz

; ðA4Þ

and the Boussinesq approximation we rewrite equation (A2)
as

d28 zð Þ
dz2

þ N 2 zð Þ
c20

8 zð Þ ¼ 0; ðA5Þ

which is an eigenvalue problem that can then be solved
for the eigenvalue c0 and corresponding eigenfunction
�(z). There are three conditions imposed on �(z): �(0) = 0,
�(h) = 1, and �′(h) = 0 [Ono, 1975]. We note that the lowest‐
order eigenfunction corresponds to the largest eigenvalue c0,
and as it is this lowest mode that dominates observation we,
like some past authors, restrict our study to this the lowest
mode.
[72] Formulae for computing a and d can be found in the

work of Grimshaw [1980] and rewritten subject to inviscid
and incompressible approximations, yielding

I	 ¼ 3

Z∞
0

�0c
2
0

@� zð Þ
@z

� �3

dz; ðA6aÞ

I
 ¼ limz!∞ c2 �08
2

� �
; ðA6bÞ

I ¼ 2

Z∞
0

�0c0
@� zð Þ
@z

� �2

dz: ðA6cÞ

With a, d, and c0 defined, the evolution equation for A(x, t)
can be written as

@A

@t
þ c0

@A

@x
þ 	A

@A

@x
þ 


@2

@x2
H Að Þ ¼ 0; ðA7Þ

which is the BDO equation. H(A) is the Hilbert transform of
A, defined as

H A xð Þ½ � ¼ 1

�

Z∞
�∞

A x′ð Þ
x′� x

dx′: ðA8Þ

Figure 14. Plots of crest creation time scales (tc) for a sinu-
soidal perturbation as a function of (top) inverse amplitude
(asterisks) and (bottom) wavelength (crosses). The solid
lines between the data points are drawn for illustration and
highlight both the linear relationship between 1/h0 and tc
and the linear relationship between l and tc.
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This definition is used by authors such as Christie [1989], but
is not a uniformly accepted definition, and other authors such
as Ono [1975] define H(A) as −H(A). This sign ambiguity
also leads some authors to compute d in equation (A6) as −d.
[73] As the limits of integration in equation (A6) indicate,

there are two regions to consider when using the BDO
equation. Figure 1b depicts both the inner region where the
density changes with altitude, and the outer region where the
density is a constant. Fluid displacement in the inner region,
[0,h], is given by equation (A1), while displacement in the
outer region, [h, ∞], can be computed from

� x; z; tð Þ ¼
Z∞
�∞

F Að Þ exp �ikx� kj j z� hð Þ½ �dk; ðA9Þ

where F is a linear operator defined by

F Að Þ ¼ 1

2�

Z∞
�∞

Aðx; tÞ expðikxÞdx: ðA10Þ

We now illustrate the above theory for the sech2 duct, which
is convenient and insightful owing to its analytic nature. The
sech2 stability profile corresponds to a hyperbolic tangent
density profile. Again, we examine the upper half plane as
depicted in Figure 1b.
[74] The sech2 profile also has the property of asymptot-

ing to a value of 1 as z tends to infinity. In order to strictly
satisfy the definition given by equation (A3), this would
define an h for the inner region that is infinitely large. A
more useful treatment is to instead define h by N2(z) =
sech2(z/h) [Benjamin, 1967; Christie, 1989]. Substituting
N2(z) = sech2(z/h) into equations (5) and (6) yields c0 =
2−1/2 N0h, a = 6/5 c0/h, and d = 3/4 c0h. These are the ana-
lytically obtained values presented in Table 1 of section 3.
[75] Substituting these values into equation (A7) then

yields the correct evolution equation for finite‐amplitude
long‐wave perturbations to the fluid field in the presence of
a sech2 density stratification.
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