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1 Kinematics

Consider a time-dependent, 1-D, incompressible swirling flow where ur = 0, uθ =
uθ(r, t), and uz = 0. For this simple flow the vorticity reduces to a single component
given by

~ω = ∇× ~u =
1

r

∂ruθ
∂r

êz = ωêz (1)

The Circulation around a circular contour of radius r is

Γ(r, t) =
∫
A
ωdA = 2π

∫ r

0
ω(r, t)rdr = 2π

∫ r

0

1

r

∂ruθ
∂r

rdr = 2πruθ (2)

2 Dynamics

The mass conservation and axial momentum equations are satisfied identically. The
radial and azimuthal momentum equations reduce to

ρ
u2
θ

r
=
∂p

∂r
(3)

∂uθ
∂t

=
∂σrθ
∂r

+ 2
σrθ
r

(4)
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where σrθ is the viscous stress, which is given by

σrθ = νt

(
∂uθ
∂r
− uθ

r

)
= νtr

∂

∂r

(
uθ
r

)
= νt

(
1

r

∂ruθ
∂r
− 2

uθ
r

)
= νt

(
ω − 2

uθ
r

)
(5)

Here we expect the flow to be turbulent and thus uθ is the Reynolds averaged velocity
and νt is the sum of the molecular and eddy viscosity, with the latter being a function
of the radial coordinate.

By making use of the above definition of the stress it is possible to write the
azimuthal momentum equation (4) in the following useful alternative form

∂uθ
∂t
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∂

∂r

(
σrθ
νt

)
+
σrθ
νt

∂νt
∂r

+ 2
σrθ
r
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∂ω
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∂

∂r

(
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r
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2σrθ/r
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∂νt
∂r
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σrθ
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∂νt
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(6)

An evolution equation for the vorticity can be derived from this equation by
operating as follows

∂ω

∂t
=

∂

∂t

(
1

r

∂ruθ
∂r

)
=

1

r

∂

∂r

[
r

(
νt
∂ω

∂r
+
σrθ
νt

∂νt
∂r

)]
(7)

Equations (2) and (6) can be combined to yield the following evolution equation
for the circulation

∂Γ

∂t
= 2πr

(
νt
∂ω

∂r
+
σrθ
νt

∂νt
∂r

)
(8)

This equation can be integrated in time to give

Γ(r, t) = Γ(r, 0) + 2πr
∫ t

0

(
νt
∂ω

∂r
+
σrθ
νt

∂νt
∂r

)
dt (9)

Note that the integrated terms take the form of net fluxes across the circular
contour at radius r. The first term is the net diffusive flux of vorticity, whereas the
second is an analogous flux of the eddy viscosity. This equation demonstrates that
the circulation about a fixed circular contour can only change via diffusion across the
contour itself. If the contour is taken at a radius where the eddy viscosity is constant,
then the circulation responds directly to the diffusion of vorticity across the contour,
which is the intuitively obvious result.

Note further that Eq. (8) implies that the circulation about an infinitely large
contour can not change with time. To see this, note that the vorticity is concentrated
near the axis so that ω → 0 as r → ∞. Thus ∂ω/∂r must also approach 0 as
r → ∞. (As we will see below, the Burnham Hallock model predicts ω ∼ 1/r4 and
∂ω/∂r ∼ 1/r5 as r → ∞). With the vorticity concentrated near the axis, the Bio-
Savart law then dictates that uθ ∼ 1/r as r →∞ and, as a consequence, σrθ/νt ∼ 1/r2

as r → ∞. Physically we do not expect the eddy viscosity to grow without bound
for large r and thus νt ∼ rk, k ≤ 0 as r →∞. Using these scaling laws, we see that
rνt∂ω/∂r ∼ rk−4 and (σrθ/νt)∂νt/∂r ∼ rk−2 as r → ∞. With k ≤ 0, both of these
terms vanish for large r and we have the result ∂Γ/∂t→ 0 as r →∞.
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3 Burnham-Hallock profile

Experimentally it is observed that the vortex velocity profile is well approximated by

uθ =
Γ∞
2π

(
r

R2 + r2

)
(10)

where R is the core radius and Γ∞ is the circulation at r →∞.

3.1 Case 1: Consistent 1-D diffusion

Although the Burnham-Hallock (BH) profile contains no explicit dependence on time,
it can inherit temporal variation via the parameters Γ∞ and R (i.e. Γ∞ = Γ∞(t)
and/or R = R(t)). According to the arguments made following Eq. (9), however, we
expect Γ∞ to remain fixed in time. Thus any temporal dependence in the BH model
that is consistent with the 1-D flow model must come in through changes in the core
radius.

In aircraft wake studies, it is found that the circulation about a fixed circular
contour (r = rc) decays in time at an approximately linear rate, i.e.

Γ(rc, t) ≡ Γc(t) = Γc(0)(1− t/τ) (11)

where τ is a constant that is approximately equal to 10[b20/(2πΓc(0))], where b0 is
the initial separation of the vortex pair. We can use the experimentally-observed
circulation decay rate to deduce the required time variation in the core radius of the
BH model. First we compute the circulation from the BH model by combining Eqs.
(2) and (10)

Γc(t) = 2πrcuθ(rc) = Γ∞

(
r2
c

R(t)2 + r2
c

)
(12)

Now combine the above two equations to get

Γ∞

(
r2
c

R(t)2 + r2
c

)
= Γ∞

(
r2
c

R2
0 + r2

c

)
(1− t/τ) (13)

and then solve for R(t)

R(t)

R0

=

√√√√1 +

(
t/τ

1− t/τ

)[
1 +

(
rc
R0

)2
]

(14)

Airliners typically produce vortices with initial core radii on the order of R0 = 1 meter
and the circulation is typically computed on a contour of radius rc = 15 meters. Thus
the parameter rc/R0 is approximately 15. Equation (14) with rc/R0 = 15 is plotted
in figure 1. This figure shows that very large changes to the core radius are required
to match the observed linear circulation decay when a consistent 1-D BH model is
used. The associated velocity profiles at a few select times are shown in Figure 2.

The predicted variation in the vortex core radius is in complete disagreement with
experimental measurements, which show R/R0 no larger than 2.4 out to a time of
t/τ = 0.4[?]. The consistent BH model, on the other hand, predicts R/R0 = 12
at the same time. The velocity profiles shown in Figure 2 show a 80% drop in
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Figure 1: Temporal variation in the BH vortex core radius for a consistent 1-D model
yielding a linear circulation decay rate (Eq. (14)). The parameter rc/R0 is set to 15.

Figure 2: BH velocity profiles for a consistent 1-D model yielding a linear circulation
decay rate. The parameter rc/R0 is set to 15. Note that T ∗ ' 10(t/τ) (i.e. t/τ =
0.1⇒ T ∗ ' 1.0).
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maximum velocity at a time of only t/τ = 0.1 (t∗ ' 1.0). This feature is also in
wide disagreement with experimental measurements, where the maximum velocity is
observed to fall by only a few percent over a similar time interval.

The discrepancies between the model and experiments indicates that the experimentally-
observed circulation decay is not associated simple 1-D diffusion with a self-similar
profile having the BH shape.

3.2 Case 2: Solution with decreasing total circulation

Since the experimental data is well represented by the BH profile, independent of time,
it may be possible to gain some insight by allowing Γ∞ to vary in time. Although
doing this violates conservation of circulation in the strict 1-D model, it may allow
for 3-D effects that are outside its scope. If we allow Γ∞ = Γ∞(t), Eq. (13) can be
written as

Γ∞(t)

(
r2
c

R(t)2 + r2
c

)
= Γ∞(0)

(
r2
c

R2
0 + r2

c

)
(1− t/τ) (15)

According to the data presented by Delisi et al. (2003), the growth of the aircraft
vortex core radius in time can be approximated by

R(t)/R0 = 1 + 3t/τ (16)

The above two equations are combined and solved for Γ∞(t) to yield

Γ∞(t)

Γ∞(0)
=

[
1 + [(1 + 3t/τ)2 − 1] + (rc/R0)

2

1 + (rc/R0)2

] (
1− t

τ

)
(17)

This solution is plotted in Figure 3. It turns out that the term [(1 + 3t/τ)2 − 1]
which accounts for the growth in the vortex core radius is small when compared the
parameter (rc/R0)

2. Thus the predicted total circulation decay is nearly the same
as the observed circulation decay computed about the circle of radius rc. This is
a significant result since it seems to suggests that the observed circulation decay is
largely due to some process other than simple diffusion. The term [1 + (3t/τ)2 − 1],
which accounts for diffusion of vorticity across the circle at r = rc is negligible by
comparison. The velocity profiles associated with Eq. (17) are shown in Figure 4.
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Figure 3: Temporal variation in the BH total vortex circulation required to match a
linear circulation decay rate (Eq. (17), red curve). The variation in the circulation
computed about the radius rc (Eq (11)) is also shown (green curve). The model
solution must be associated with 2-D effects. The parameter rc/R0 is set to 15.

Figure 4: BH velocity profiles associated with a linear circulation decay rate for the
model accounting for 2-D effects. The parameter rc/R0 is set to 15.
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4 Mathematical model for decreasing total circu-

lation

The experimental results of Delisi et al. (2003) and Burnham and Hallock (2013), as
well as the analysis in the previous section all suggest that the decay of an aircraft
vortex wake pair can be modeled via the BH profile with a nearly constant core
radius but a time-dependent total circulation. While variable total circulation violates
conservation of circulation for the strict 1-D equations governing the diffusion of
an isolated vortex, it is likely that it can account for the multi-dimensional effects
embodied in detrainment of vorticity as well as the annihilation of vorticity due to
merger near the pair centerline. Thus it is of interest to determine whether or not it
is possible to build a complete mathematical model for a BH profile with fixed core
radius but decaying total circulation. Such a model is achieved by determining an
eddy viscosity distribution that, when substituted into Eq. (6), yields a linear decay
in the circulation measured at r = rc while preserving the BH profile shape with fixed
core radius.

We start the analysis by requiring that velocity profile obey Eq. (10) with R
fixed but Γ∞ variable in time. Equations (10), (1) and (5) then give the following
expressions for the velocity time derivative, the vorticity, its radial derivative, and
the shear stress

∂uθ
∂t

=
(

Γ∞
2π

) [
r

R2 + r2

] (
1

Γ∞

dΓ∞
dt

)
(18)

ω = 2
(

Γ∞
2π

)
R2

[R2 + r2]2
(19)

∂ω

∂r
= −8

(
Γ∞
2π

)
rR2

[R2 + r2]3
(20)

σrθ
νt

= −2
(

Γ∞
2π

)
r2

[R2 + r2]2
(21)

The circulation at radius rc is given by Eq. (12), but with Γ∞ variable in time
and R fixed

Γc(t) = 2πrcuθ(rc) = Γ∞(t)

(
r2
c

R2 + r2
c

)
(22)

This equation implies
1

Γ∞

dΓ∞
dt

=
1

Γc

dΓc
dt

= −
(

1

τ − t

)
(23)

where the rightmost expression comes from Eq. (11). Now when Eqs. (18)-(21) and
(23) are substituted into Eq. (6) and the result simplified, the following equation for
the eddy viscosity arises

∂νt
∂r

+ 4νt

[
R2

r(R2 + r2)

]
− 1

2(τ − t)

[
R2 + r2

r

]
= 0 (24)

The solution to Eq. (24) is

νt(r, t) =
1

4

(
R2

τ

)
[1 + (r/R)2]

2

(r/R)4(1− t/τ)

{(
r

R

)2

− ln

[
1 +

(
r

R

)2
]}

(25)
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Figure 5: Eddy viscosity profiles for linear circulation decay and fixed BH velocity
profile shape. The eddy viscosity is normalized by the molecular viscosity. The
solutions were generated for Γ∞ = 600 m2/s, b0 = 45.5 m and standard atmospheric
conditions.

The results are shown in Figure 5. Profiles are shown for various times as Eq. (25)
dictates that the eddy viscosity be time-dependent. Note that the eddy viscosity is
small at the origin and increases with radius. This is consistent with the picture of
little or no turbulence within the core and increased turbulent transport outside of
the core. Also note that the eddy viscosity is increased by the multiplicative factor
1/(τ − t) as time increases. This is a somewhat curious feature of the solution that
is required in order to force the linear circulation decay.

While exact, Eq. (25) is complicated in form. The following matched asymptotic
approximation is quite a bit simpler and can be used to more readily asses the behavior
of the solution.

νt(r, t) '
1

4

(
R2

τ

)[
1/2 + α(r/R)2

(1− t/τ)

]
; α = 1 (26)

This approximation is exact in both limits r → 0 and r → ∞ and is a fairly good
approximation in between. Its accuracy at intermediate r can be increased at the
expense of some asymptotic error at r → ∞ by taking the parameter α away from
1 slightly. Figure 6 shows a comparison of the exact and approximate solutions for
α = 0.989.

Although our solution for the eddy viscosity is probably reasonable out to a several
multiples of the vortex core radius, it has the physically implausible divergent form
νt ∼ r2 for r � R. Returning to the discussion following Eq. (9), this is precisely
the variation (i.e. k = 2) required in order to give dΓ/dt 6= 0 as r → ∞. Thus
our physically inconsistent demand that dΓ∞/dt 6= 0 for the 1-D equation system
precipitated a physically impossible eddy viscosity distribution as r →∞. Although
this aspect of the solution is unsettling, we may be able to ignore this detail if we are
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Figure 6: Comparison of the exact and approximate solutions for the eddy viscosity.

interested only in the solution out to 10-20 multiples of the core radius. After all, our
intent was to see if there is a way to incorporate multi-dimensional effects in a 1-D
model.

Now let us return to the solution of Eq. (6) in conjunction with the eddy viscos-
ity distribution given by the solution to Eq. (24). The resulting circulation decay
and velocity profiles are shown in Figures 7 and 8. The expected linear circulation
decay is recovered and there is very little difference between the solutions with the
exact or approximate eddy viscosity distribution. The velocity profiles appear to have
constant BH shape with fixed core radius. The quality of the profile shape can be de-
termined more precisely by normalizing the velocity by the instantaneous circulation.
This is done for both the solutions with the exact and approximate eddy viscosity
distributions in Figure 9. The results for the exact eddy viscosity distribution (Eq.
(25)) are shown by solid curved on the right half of the graph and those using the ap-
proximate solution (Eq. (26)) are shown by dashed curves on the left half. While the
profile shape is somewhat variable when the approximate eddy viscosity distribution
is used, the collapse is perfect when the exact distribution is used. Thus the details
of the profile shape are sensitive to errors in the eddy viscosity distribution whereas
the circulation is largely unaffected.

As mentioned earlier, a curious feature of our solution is that the eddy viscosity
is predicted to increase in time like 1/(τ − t). The simple reason for this is that a
constant circulation decay rate can only be accomplished in the presence of dimin-
ishing gradients via an offsetting increase in the diffusion coefficient. Although the
reason for the temporal dependence is clear, it is unsettling since, if anything, one
would expect the eddy viscosity to decrease in time as the gradients that sustain the
turbulence decay. Thus we are motivated to investigate how the circulation decay is
affected if the predicted temporal dependence is suppressed and the eddy viscosity
distribution is held fixed in time. Results of such a test are shown in Figure 10. As
expected, the decay is non-linear when a static eddy viscosity distribution is used.
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Figure 7: Computed 15 m circulation decay when Eq. (6) is solved using the eddy
viscosity distribution given by Eq. (24). Results are also shown when the approximate
eddy viscosity distribution given by Eq. (26) is used. The solution is for Γ∞ =
600m2/s, b0 = 45.5 m and standard atmospheric conditions.

Figure 8: Velocity profiles computed from Eq. (6) using the eddy viscosity distribu-
tion given by Eq. (25). The solution is for Γ∞ = 600m2/s, b0 = 45.5 m and standard
atmospheric conditions.
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Figure 9: Scaled velocity profiles computed from Eq. (6) using the eddy viscosity
distribution governed by Eq. (24). Results using the exact eddy viscosity distribution
(Eq. (25)) are shown by solid curved on the right half of the graph and those using
the approximate solution (Eq. (26)) are shown by dashed curves on the left half.

Figure 10: Computed 15 m circulation decay using both time-varying and static eddy
viscosity distributions. The ”boosted” curve uses a static eddy viscosity distribution
that is multiplied by a constant factor of 1.5.

11



However, the results are reasonably close to the anticipated linear decay, especially if
the eddy viscosity is boosted by a a factor designed to produce an average slope that
matches the observed linear decay rate.

One might suppose that a constant circulation decay rate could be achieved with
a static eddy viscosity distribution if the core radius is allowed to vary in time. This
prospect was investigated but found to be a false hope since the velocity profile ceases
to depend on R when r/R � 1. Thus one has no authority to control the solution
via a dR/dt term when r is large.
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